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Abstract

A model of quark masses and mixing angles is constructed within the framework of two large extra
compact dimensions. A “democratic” almost pure phase mass matrix arises in a rather interesting
way. This type of mass matrix has often been used as a phenomenologically viable ansatz, albeit
one which had very little dynamical justification. It turns out that the idea of large extra dimensions
provides a fresh look at this interesting phenomenological ansatz as presented in this paper. Some
possible interesting connections to the strong CP problem will also be presented.
 2003 Elsevier Science B.V. All rights reserved.

PACS: 11.10.Kf; 12.15.Ff

1. Introduction

The question of the origin of fermion mass hierarchy, mixing angles and CP violating
phase is one of the most outstanding problems in particle physics. There have been
numerous attempts to study this problem, some of which are more theoretical in nature
while others are more phenomenological. However, it is generally agreed that the final
word is far from being said. Furthermore, it is also agreed that the solution, whatever it
might be, is to be found outside of the Standard Model (SM).

In all of these studies, the phenomenological-ansatz approach is much more modest in
scope. Starting with some simple assumption about the form of the mass matrix whose
theoretical justification is yet-to-be-determined, one could fit quark masses and mixing
angles. One of such approaches is particularly appealing: the pure phase mass matrix
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(PPMM) [1,2]. This particular ansatz is based on a simple assumption that there is a single
and unique Yukawa coupling for each quark sector and that the 3× 3 mass matrix takes
the formM = gY (v/

√
2){exp(iθij )}, where i, j = 1,2,3. This kind of mass matrices

belongs to a class of the so-called “democratic mass matrices” (DMM) [3]. The pure
phase mass matrix is attractive in that the hierarchy of masses is governed by a single
Yukawa coupling in the limit where all phases vanish. A realistic hierarchy comes about
when the phases, which are treated as small perturbations, are put back in. Although it is
conceptually attractive, no attempt was made to justify its underlying assumption. Earlier
works on trying to model the pure phase mass matrix relied entirely on the framework
of four-dimensional field theories. Although there are a number of useful lessons that can
be learned from this mode of thinking, one is sometimes faced with more questions than
answers.

On another front, there has been important conceptual developments in the last few
years related to a possible existence of large extra dimensions [4,5]. Not only does this
concept force us to rethink about notions such as the question of what the ultimate
fundamental scale of nature might be, it also inspires us to reformulate some of the
longstanding problems in particle physics such as the origin of fermion masses and
mixings. The hierarchy of masses has been reexamined recently within the framework of
large extra dimensions, and new interesting ideas have emerged such as the notion of “thick
branes” and the localization of various fermions inside these branes [6]. This localization
can be accomplished by a domain wall inside the brane. This gave rise to the idea of the
strength of the Yukawa coupling (which is proportional to the mass of the fermion) as
being the overlap of the wave functions of the localized fermions. As stated in Ref. [6], it
is easy to think of the reason why some fermions are heavy and some are light: the heavy
ones have large overlap and the light ones have small overlaps. There has been some works
done along that line in order to explain the fermion mass hierarchies. Most of these works
made use of the size of the wave function overlaps to discuss the fermion mass problem.

Whatever various scenarios might be, the common important elements which transpired
from these works are basically the locations of the domain walls and the size of the wave
function overlaps. In fact, many of the physics results will depend on the actual placements
of the domain walls along the extra dimensions.

Our approach in this paper is as follows: for each fermion sector (e.g., the up and down
quark sectors), there is a universal overall mass scale whose Yukawa coupling strength is
determined by the size of the overlap. This gives rise to a democratic mass matrix whose
elements are all equal to unity, apart from a common mass scale factor multiplied by an
effective Yukawa coupling. All that is needed is to localize all the left-handed fermions
at one location, regardless of family indices, and all the right-handed fermions at another
location along the fifth dimension inside the thick brane, and, in addition, to endow the
fermions with a permutation symmetry. Unfortunately, it is well known that this kind of
matrix does not work: one obtainsone non-zero mass eigenvalue andtwo zero eigenvalues.
The matrix{1} has to be replaced by another quasi-democratic one of the form such as
{exp(iθij )}, for example. The mass hierarchy which ariseswithin each sector is due, in
our scenario, to the introduction of a sixth dimension and a thick brane along it. The
introduction of “family” domain walls at different locations inside this thick brane generate
different phases for different families. It will be seen that it is these phase differences
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which give rise to thepure phase mass matrix or, as we shall see, an almost-pure phase
mass matrix. We would like to stress that, although a permutation symmetry was used, the
results obtained are purelygeographical in nature.

We would like to make the following remark. Our model will contain a certain number
of parameters that need to be fixed phenomenologically. However, what we present here
is a new perspective on an old problem which, hopefully, can give further insights which
might be useful for future investigations. What we are doing here is to try to rephrase the
origin of quark mass hierarchy (and eventually that of the leptons as well) and CP phase
in a completely new context: that of the Compact Extra Dimensions (CED). We will show
below that the appearance of the phases in the mass matrices, a crucial element in their
construction, appear rather “naturally”. From this point of view, it appears to be a definite
conceptual advantage of the CED scenario.

One remark is in order here concerning the introduction of a sixth dimension. It is well
known that, with just one extra compact dimension, the fundamental 5-dimensional Planck
scale cannot be of the order of a few TeV or so, for it will introduce deviations to the
inverse square law on astronomical distances. Recent gravity experiments [7] down to a
millimeter or so put a lower bound of around 3 TeV on the 4+ n Planck scale for the
case ofn = 2 (with equal compactification radii). This fact, of course, was not the one
motivating us in introducing a sixth dimension. It is rather the natural way in which phase
differences appear between different fermions eventually giving rise to a pure phase mass
matrix which motivated us.

The organization of the paper is as follows. First we review various features of fermions
in five dimensions, including, for instance, the concept of fermion localization. We then
show how, with a rather simple assumption, a democratic mass matrix appears. Next, we
introduce fermions in six dimensions and show how phase differences appear, and how
one can construct an (almost) pure phase mass matrix from this result. In this construction,
“family” domain walls are introduced and it is shown that their small separations along
the sixth dimension are responsible for the aforementioned phase differences. Unlike what
happens along the fifth dimension, the fermion wave functions are not of the localizing
type but are rather oscillating. We will then discuss how Hermitian and non-Hermitian
pure phase mass matrices arise. Finally, we will discuss some possible connections to the
strong CP problem [8].

2. Fermions in 5 dimensions and democratic mass matrix

2.1. A review

In this section, we will review some aspects of fermions in five dimensions which have
support[0,L] along the fifth dimension. In other words, we are discussing a “thick brane”
of thicknessL. This discussion serves two purposes: to set the notations and to lead to the
democratic mass matrix.

We will adopt the effective field theory approach of Refs. [10,11]. This approach has
the merit of being relatively simple and transparent as far as the physics is concerned. We
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first summarize below what has been done for the case of one flavor of fermions, without
and with a background scalar field.

To set the notations straight, the 4-dimensional coordinates will be labeled byxµ with
µ = 0, . . . ,3 while the fifth coordinate will be labeled byy. We start out with a free
Dirac spinor ofSO(4,1) which has four components,ψ . The gamma matrices areγ µ

andγy = iγ5. The free Dirac Lagrangian is given by

L= ψ̄

(
i/∂ + iγy

∂

∂y

)
ψ,

(1)= ψ̄

(
i/∂ − γ5

∂

∂y

)
ψ.

The above Lagrangian has the followingZ2 symmetry: ψ(x, y) → Ψ (x, y) =
±γ5ψ(x,L − y). When this symmetry is combined with the periodic boundary condition:
ψ(x, y) = Ψ (x,L + y) = ψ(x,2L + y), one obtains:ψ(x,−y) = Ψ (x,L − y) =
±γ5ψ(x, y) andψ(x,L+y) = Ψ (x, y)= ±γ5ψ(x,L−y), which shows thaty = 0,L are
fixed points. One can subsequently define the chiral components ofψ by using the usual
operatorsPR,L = (1 ± γ5)/2, with ψ+ = PRψ andψ− = PLψ , with γ5ψ± = ±ψ±. The
previous symmetry and boundary conditions are what usually referred to in the literature as
compactification on anS1/Z2 orbifold. One can have fermions which have the symmetry
ψ(x, y) → Ψ (x, y) = +γ5ψ(x,L − y), and those which haveψ(x, y) → Ψ (x, y) =
−γ5ψ(x,L − y).

For simplicity, we shall discuss the caseψ(x, y) → Ψ (x, y)= +γ5ψ(x,L − y) below.
This corresponds to the case where onlyright-handed zero modes survive in the brane,
as shown below. For the other situation,ψ(x, y) → Ψ (x, y) = −γ5ψ(x,L − y), only the
left-handed zero modes survive inside the brane, as one can easily check.

Zero modes residing in the brane are supposed to be independent of the extra coordinate,
y in this case. From the above discussion, one can see thatψ− vanishes at the fixed points,
and hence there is no zero mode forψ−. The only non-vanishing zero mode isψ0+. This
can also be seen explicitly by writing

(2a)ψM+(x, y)= ψM+(x)ξM+(y),

(2b)ψM−(x, y)= ψM−(x)ξM−(y),

for a mode of massM. From the explicit solutions forξ as given in Ref. [10], one can again
see that there is only one chiral zero mode inside the brane. Four-dimensional chirality is
seen to arise from the symmetry and boundary conditions. The chiral zero modeψ0+ is
uniformly spread over the fifth dimensiony. To localizeψ0+ at specific points alongy
inside the brane, the use of domain walls have been suggested by Refs. [6,10]. To this end,
a background scalar field,Φ, is introduced. The Lagrangian is given by

(3)L = ψ̄

(
i/∂ − γ5

∂

∂y
− fΦ

)
ψ + 1

2
∂µΦ∂µΦ − 1

2
∂yΦ∂yΦ − λ

4

(
Φ2 − V 2)2.

The symmetry and boundary conditions onΦ are now:Φ → Φ̃(x,L − y) = −Φ(x,y);
Φ(x,−y)= Φ̃(x,L−y)= −Φ(x,y) andΦ(x,L+y)= Φ̃(x, y)= −Φ(x,L−y). It can
then be seen thatφ vanishes at the orbifold fixed points:y = 0,L. As discussed in Ref. [10],
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Φ has a minimum energy configuration:〈Φ(x,y)〉 = φ(y), with φ(0) = φ(L) = 0. From
the modified equations forξM± with an added termf φ(y), one can easily see the
localization of the zero mode, namely,

(4)ξ0+(y) = ke−s(y), ξ0−(y) = 0,

where

(5)s(y) = f

y∫
0

dy ′φ(y ′).

As pointed out by Ref. [10], the chiral zero mode,ξ0+(y), is now localized either aty = 0
or y = L depending on the sign offφ(y).

As in Ref. [6], the special choicefφ(y) = 2µ2y which makes the operatorsa =
∂y +f φ(y) anda† = −∂y +f φ(y) behave like the annihilation and creation operators of a
Simple Harmonic Oscillator (SHO), the normalized wave function for the chiral zero mode
ξ0+(y) takes on the familiar formξ0+(y) = (

√
µ/(π/2)1/4)exp(−µ2y2). One clearly

notices the localization ofξ0+(y) aty = 0. Another way of describing this phenomenon is
the fact thatφ has a kink solution of the formV tanh((λ/2)1/2Vy) which basically traps
the fermion to a domain wall of size((λ/2)1/2V )−1 [12].

The next question concerns the possibility of localizing the chiral zero mode at some
other location than the one at the orbifold fixed points. Ref. [6] has proposed to change the
Yukawa interaction̄ψ(f φ(y))ψ to ψ̄(f φ(y)−m)ψ so that the wave function of the chiral
fermion field is now localized at thezero of fφ(y) − m instead offφ(y). With the SHO
approximation, this zero would be aty = m/2µ2. However, in order to be compatible with
theZ2 symmetry of the Lagrangian, as shown in Eq. (3), one should also require a “mass
reversal”m → −m simultaneously with theZ2 transformations. This is the assumption we
will be making in this manuscript. (Another approach is given in Ref. [10].)

As emphasized by Ref. [6], different massless chiral fermions can be localized on
different slices alongy, inside the thick brane. These locations are determined by the
zeros offφ − mi = 0. Within the SHO approximation, the wave functions are given by
(
√
µ/(π/2)1/4)exp(−µ2(y − yi)

2), whereyi = mi/2µ2. The interesting idea proposed in
Ref. [6] is that the effective Yukawa couplings between SM fermions and SM Higgs scalar,
which eventually determines the size of the mass term, are mainly determined by the wave
function overlap between the left- and right-handed fermions. Hierarchy of masses then
appears to depend on the size of the overlaps.

From hereon, we shall turn our attention toleft-handed zero modes inside the brane as
used in the SM. As we have mentioned earlier, these come from five-dimensional fermions
with theZ2 symmetryψ(x, y) → Ψ (x, y)= −γ5ψ(x,L − y).

To prepare the groundwork for our subsequent discussion, let us write down the action
in five dimensions of a left-handed fermion, a right-handed fermion, and the Yukawa
interactions with a background scalar field, and a SM Higgs field. Following Ref. [6], we
will denote quarks in five dimensions by the five-dimensional Dirac fields:(Q,Uc,Dc)

and theirleft-handed zero modes by the following Weyl fields:(q,uc, dc). Notice that
with this notation, a right-handed down quark, for example, will bed̄c. Since we will be
dealing in this paper solely with the quark sector, we are not writing down the lepton fields.
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This will be dealt with in a subsequent paper. The SM transformations of the above fields
are self-evident by the use of these notations. In addition, one also introduces two sets of
scalar fields: a SM singlet background scalar field,φ, whose VEV is〈Φ(x,y)〉 = φ(y),
a SM doublet Higgs fieldH(x,y) whose zero modeh(x) is assumed to be uniformly
spread alongy inside the thick brane. The 5-dimensional action can be written as

S =
∫

d5x �Q(i/∂5 + f φ(y)
)
Q + �Uc

(
i/∂5 + fφ(y)−mU

)
Uc

(6)+ �Dc
(
i/∂5 + f φ(y)−mD

)
Dc + κUQT C5HUc + κDQT C5H̃Dc,

whereC5 = γ0γ2γy . From the above equation, one notices thatQ,Uc,Dc are localized
at yQ = 0, yU = mU/2µ2, yD = mD/2µ2, respectively. In principle,mU andκU can be
different frommD andκD , respectively. However, as we can see below, it is sufficient to
havemU �= mD in order for the resulting masses of up and down quarks to be different,
even ifκU = κD . Assuming that the zero mode ofH is uniformly spread overy inside the
thick brane, the 4-dimensional effective action for the Yukawa interaction for the up quark
can be written as

(7)S =
∫

d4x κUqT (x)h(x)uc
∫

dy ξq(y)ξuc (y),

and similarly for the down quark. From the form of the wave functions, one obtains the
4-dimensional effective Yukawa couplings for up and down quarks as follows

(8)gY,u = κU exp
(−µ2y2

U/2
)
,

(9)gY,d = κD exp
(−µ2y2

D/2
)
.

Two remarks can be made concerning Eqs. (8) and (9). First of all, as emphasized by
Ref. [6], even ifκ ’s are of order unity, the effective Yukawa couplings can be quite small if
µyU,D � 1. Basically, the size of the effective coupling is sensitive to the relative distance
between left- and right-handed quarks as compared with the characteristic thickness of
the domain walls. The second remark concerns the Yukawa couplings in five dimensions,
κU,D . In this new framework of large extra dimensions, one has to separate the mechanism
which separatesgY,u from gY,d , already at the level of the 5-dimensional action from that
which separatesgY,u from gY,d at an effective field theory level in four dimensions due
to different localization points along the extra dimension inside the thick brane. It might
happen that the 5-dimensional action has an up–down symmetry in the Yukawa sector
which is broken down inside the brane. We shall return to this question at the end of the
paper.

2.2. Democratic mass matrix

Let us, for now, concentrate on just one sector, e.g., the up sector. Let us assume that
there are three families. The fermion fields in five dimensions that we will be dealing with
in this section will beQ andUc . As we shall see below, in order to obtain the DMM
scenario, we will put all theQ’s at one location alongy inside the thick brane, and all
theUc ’s at another location. With this simple assumption and the assumption that the SM
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Higgs zero mode is uniformly spread inside the thick brane, one can naively obtain the
democratic mass matrix mentioned above. However, with the gauge field zero modes also
spreading uniformly inside the thick brane, this will give rise to unwanted flavor-changing
neutral current (FCNC) operators. A symmetry has to be imposed in order to avoid these
FCNCs.

A simple symmetry that one can use is a permutation symmetry among the three
families, for bothQ andUc . One can have:SQ

3 ⊗SUc

3 , with Q → S
Q
3 Q andUc → SUc

3 Uc.
The background scalar field described earlierφ(y) is a singlet under the above permutation
group. (In this way, one will see that allQ’s are localized at one place and allUc ’s are
localized at another place.) One can now include gauge interactions in the kinetic terms of
(6) by making the replacement/∂5 → /D5, namely,

S0 =
∫

d5x �Q(i/D5 + fφ(y)
)
Q + �Uc

(
i/D5 + f φ(y)−mU

)
Uc

(10)+ �Dc
(
i/D5 + fφ(y)−mD

)
Dc.

It is simple to see thatS0 is invariant under the above permutation symmetry. Eq. (10) also
implies that allQ’s are localized at one place and allUc ’s are localized at another place.

Next, we wish to introduce a Yukawa interaction between the SM Higgs scalar andQ

andUc . First, we notice that a term such as

(11)LYukawa= κUQ
T C5HUc + h.c.,

breaks the permutation symmetry sinceQ andUc transform under different groups. If
they were to transform under thesame permutation group, Eq. (11) would be an invariant.
However, it would give a mass matrix of the form

(12)M = gY,u
v√
2

(1 0 0
0 1 0
0 0 1

)

which is not of the DMM type. It turns out that withSQ
3 ⊗ SUc

3 , one can construct an

invariant for each permutation group:
∑

i Qi for SQ
3 and

∑
j U

c
j for SUc

3 wherei = 1,2,3
andj = 1,2,3 are family indices. From this, one can construct an invariant action for the
Yukawa interaction

(13)SYukawa=
∫

d5x κU
∑
i

QT
i C5H

∑
j

Uc
j + h.c.

The effective action in four dimensions can now be written as

(14)Seff,Yukawa=
∫

d4x κU
∑
i,j

qT ,i(x)h(x)uc,j
∫

dy ξiq (y)ξ
j
uc (y)+ h.c.

Since all theqi ’s are located at the same place inside the brane, and similarly for all theuci ,

the wave function overlap
∫
dy ξiq (y)ξ

j
uc (y) is universal andindependent of i, j . With this,

one can now rewrite Eq. (14) as

(15)Seff,Yukawa=
∫

d4x gY,uq
T (x)

(1 1 1
1 1 1
1 1 1

)
h(x)uc + h.c.,
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wheregY,u is given by Eq. (8),qT = (qT
1 , qT

2 , qT
3 ) and similarly foruc(x). From Eq. (15),

one obtains the democratic mass matrix

(16)M = gY,u
v√
2

(1 1 1
1 1 1
1 1 1

)
.

An important remark is in order here. The universal strength in Eq. (16) depends on,
besides the SM quantityv/

√
2 ∼ 175 GeV,gY,u which is a product of two factors: the

five-dimensional Yukawa coupling,κ , and the overlap of left- and right-handed fermion
wave functions. In this scenario and its extension presented below, it is this product that is
important, and not simply the size of the overlap.

As we have mentioned above, the above matrix can be brought by a similarity
transformation to a form

M′ = SMS−1

(17)= gY,u
v√
2

(0 0 0
0 0 0
0 0 3

)
.

As one can see above, one needs to move beyond the DMM scenario in order to obtain a
more “realistic” mass matrix. This is what we propose to do in the next section.

One might wonder what the distinctive feature a fifth dimension has to give us in
regards with the above problem. Could one not obtain a similar result staying in just
four dimensions? In principle, the answer is yes. However, it appears more attractive to
think that, onceqi are lumped together at one place anducj are lumped at another place,
one would obtain the DMM naturally. It is interesting to envision a scenario in which the
Yukawa couplings are as universal as the gauge couplings themselves, with the possibility
that the effective Yukawa couplings can be different from one another due to the different
overlaps between left and right fermions. (Gauge interactions are chirality conserving and,
as a result, the effective gauge coupling with the gauge boson zero mode is the same as the
original coupling.)

The above discussion carries over to the down sector in a similar fashion. Obviously,
although attractive, this kind of democratic mass matrix does not give the correct mass
spectrum. An extension of DMM was discussed by Ref. [1], in which, instead of having
one’s as matrix elements, one has pure phase factors such as exp(iθij ). (The diagonal
elements can be all unity by a suitable redefinition of the quark phases.) Explicitly, a pure
phase mass matrix looks likeM = gY (v/

√
2)(exp(iθij )).

To construct a model for PPMM—even for the special case such as a symmetric matrix,
one usually requires a rather complicated Higgs structure [2]. That is if one stays in four
dimensions. One might wonder if extra dimensions might help in this regards. We have
seen above how an additional dimension could help conceptually in obtaining a democratic
mass matrix. The question we ask is the following: could pure phases such as exp(iθij )

arise from extra dimensions and not from some kind of complicated Higgs sector? In
particular, if we keep the Higgs sector to a minimum (one Higgs), this phase cannot come
from the Yukawa coupling nor from the VEV of the SM Higgs. We have seen that, in five
dimensions, a chiral zero mode has, as a part of its wave function,ξ(y) which behaves,
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upon being trapped by a domain wall, like exp(−µ2y2). As we shall see below, by adding
another compact dimension (the sixth one), the phases appear as the overlaps between wave
functions of fermions which are “trapped” at different locations along the 6th dimension.
What this really means will be explored in the next section.

3. Fermions in 6 dimensions and pure phase mass matrix

Notwithstanding the string theory argument, there might be another simpler motivation
for the need of more than one extra spatial dimension: if the fundamental 4+ n “Planck”
scale were ofO(TeV) to “solve” the hierarchy problem, and if then extra dimensions
were to be compactified with the same radiusR thenn � 2 in order forR to be in the
submillimeter region as required by the lack of deviation from the ordinary inverse square
law down to about 0.2 mm [7]. In our case, the above need is dictated by the desire to
build a more “realistic” mass matrix: the so-called pure phase mass matrix or its almost-
pure-phase counterpart. (In this construction, we are not concerned about whether or not
the ultimate theory contains more than six dimensions.) To this end, we first study the
behaviour of fermions in six dimensions, subject to similar boundary conditions as in the
5-dimensional case.

3.1. Fermions in six dimensions

The task of this section is to study fermions in six dimensions, with the ultimate aim of
obtaining massless chiral fermions in four dimensions.

In order to discuss fermions in six dimensions, we first turn our attention to the
representation of gamma matrices for these fermions. Before we begin the discussion, a few
remarks concerning spinors inSO(N) are necessary.

We shall be working with the groupSO(5,1) that, as we discuss in Appendix A,
has two irreducible spinor representations of dimension 4. We shall putψ+ and ψ−
into a reducible “Dirac” spinorψ = (ψ+,ψ−). The chiral representation of the gamma
matrices forSO(5,1) is shown in Appendix A. The notation for the coordinates will
be similar to the five-dimensional case, with the sixth dimension denoted byz, namely,
xN = (x0, x1, x2, x3, y, z). The free Lagrangian forψ is now written as

(18)Lψ = iψ̄Γ N∂Nψ,

whereN = 0,1,2,3, y, z. The metric used in this paper is simply(−+++++). It is
useful to see explicitly the Lagrangian written in terms of the components ofψ . For this
purpose, we give the explicit forms forΓy andΓz as can be seen from Appendix A,

(19)Γy =
(

0 −iγ5
iγ5 0

)
,

(20)Γz =
(

0 I

I 0

)
,
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whereγ5 is the usual matrix encountered in four dimensions andI is a 4× 4 unit matrix.
In addition, we also need̄ψ = ψ†Γ0 = (ψ̄−,−ψ̄+). Eq. (18) can now be rewritten as

Lψ = −iψ̄+γ µ∂µψ+ − iψ̄−γ µ∂µψ− + ψ̄+γ 5∂yψ+ + ψ̄−γ 5∂yψ−
(21)− iψ̄+∂zψ+ + iψ̄−∂zψ−.

As we explain in Appendix A, the 4-dimensional kinetic terms (the first two terms of the
above equation) will acquire a plus sign whenγ µ are replaced bỹγ µ which are appropriate
for the metric(−+++) which is a remnant of the original metric(−+++++). The
reader is strongly recommended to consult Appendix A concurrently with this section in
order to avoid confusion.

As in the case of the fifth dimension, we will assume that the sixth dimension is
compactified on an orbifoldS1/Z2. ψ is assumed to have support[0,L6] along the sixth
dimension. We first discuss thisZ2 symmetry for free fermions.

From Eq. (18), one can see that the Lagrangian has the followingZ2 symmetry:

(22)ψ
(
xα, z

)→ Ψ
(
xα, z

)= Γzψ
(
xα,L6 − z

)
.

With Γz given above, this symmetry translates into

ψ+
(
xα, z

)→ Ψ+
(
xα, z

)= ψ−(xα,L6 − z),

(23)ψ−
(
xα, z

)→ Ψ−
(
xα, z

)= ψ+
(
xα,L6 − z

)
.

As with the five-dimensional case, our boundary condition is

(24)ψ±
(
xα, z

)= Ψ±
(
xα,L6 + z

)= ψ±
(
xα,2L6 + z

)
.

Again, combining (23) with (24), one obtains

(25)ψ±
(
xα,−z

)= ψ∓
(
xα, z

)
,

(26)ψ±
(
xα,L6 − z

)= ψ∓
(
xα,L6 + z

)
.

We immediately recognizesz = 0,L6 to be the fixed points of the orbifold. It is convenient
to rewriteψ± as

(27)ψ± = 1√
2
(χ ± η).

In terms ofχ andη, the boundary conditions become

(28)χ
(
xα,−z

)= χ
(
xα, z

)
,

(29)η
(
xα,−z

)= −η
(
xα, z

)
,

(30)χ
(
xα,L6 − z

)= χ
(
xα,L6 + z

)
,

(31)η
(
xα,L6 − z

)= −η
(
xα,L6 + z

)
.

From the above boundary conditions, one can see thatη vanishes at the fixed points
z = 0,L6.
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As usual, we shall write:

(32a)χM

(
xα, z

)= χM

(
xα
)
ξχ,M(z),

(32b)ηM
(
xα, z

)= ηM
(
xα
)
ξη,M(z).

Since thezero modes in the “4-brane” areindependent of z, we have

(33)χ
(
xα, z

)
0 = kχ

(
xα
)
, η

(
xα, z

)
0 = 0,

where k is a constant. Again, the free fermion wave function for the zero mode is
uniformly spread over the 6th dimension. We now investigate the effect of a coupling with
a background scalar field having a kink solution.

For the discussion which follows, it is convenient to notice that

(34)−iψ̄+∂zψ+ + iψ̄−∂zψ− = −iχ̄∂zη − iη̄∂zχ.

Eventually, we would like to find an equation for the surviving zero modeχ(xα, z)0 in the
presence of a background scalar field which will be assumed to be real. For this purpose,
let us write the surviving zero modeχ as

(35)χ0
(
xα, z

)= χ
(
xα
)
ξχ,0(z).

As we shall see, upon using Eq. (34) and subsequent interaction terms, one can derive an
equation governing the behaviour ofξχ,0(z) alongz which will eventually tell us whether
or not one has a localized behaviour as in the five-dimensional case or an oscillatory
one (pure phase). This will depend on the type of fermion bilinears which couple to the
background scalar. Roughly speaking, if the coupling ends up to be of the formiη̄ χh(z),
for example, thenξχ,0(z) will have an exponentially-suppressed form similar to the five-
dimensional case. If, however, it ends up looking likeη̄ χh(z), thenξχ,0(z) will have an
oscillatory behaviour. This is so because of the way Eq. (34) looks.

We now look for the aforementioned fermion bilinears which are required to be
Hermitian (because the background scalar field is assumed to be real) and Lorentz
invariant.

Let us introduce a real scalar field which transforms underZ2 as

(36)Φ
(
xα, z

)→ −Φ
(
xα,L6 − z

)
.

First, the most obvious, Hermitian and Lorentz-invariant bilinear is simply (remember-
ing thatΓ0 is anti-Hermitian with our metric)

(37)iψ̄
(
xα, z

)
ψ
(
xα, z

)
.

Notice that (37), when expanded in terms ofχ andη, are of the formiη̄χ +· · · . This, when
combined with Eq. (34), would give an exponentially-suppressed form for the zero mode
if there exists such a Yukawa coupling. Can it couple toΦ? If the reflectionZ2 symmetry
were the only symmetry around, it is straightforward to see that a coupling of the form
iψ̄(xα, z)ψ(xα, z)Φ(xα, z) is an invariant. This, as we have mentioned above, would not
be what we are looking for, namely, an oscillatory wave function. A mere mimicking of the
five-dimensional case would not work. Below we propose a mechanism where the desired
behaviour could arise.
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Let us endow the scalar and fermion fields with an additional discrete symmetry which
will be called theQ-symmetry and which works as follows. Let us divide the space inside
the brane of thicknessL6 into two regions: 0 toL6/2 (region I) andL6/2 toL6 (region II).
Let us define the following transformations. UnderQ,

(38)Φ
(
xα, z

)→ −Φ
(
xα, z

)
.

Notice that (38) is not to be confused with (36) which is a reflection symmetry. We then
notice the following fact: ifz is inside region I thenL6 − z will be inside region II and vice
versa. For the fermion, we will impose the followingQ-transformations:ψ → ψ for z in
region I andψ → −ψ for z in region II.

With the aboveQ-symmetry, one notices that a coupling of the formψ̄(xα, z)ψ(xα, z)×
Φ(xα, z) is forbidden for any pointz inside the brane. However, a non-local interaction of
the form ψ̄(xα, z)ψ(xα,L6 − z)Φ(xα, z) is allowed by theQ-symmetry. In particular,
a Hermitian bilinear containingψ̄(xα, z)ψ(xα,L6 − z) of the formψ̄(xα, z)ψ(xα,L6 −
z)− ψ̄(xα,L6 − z)ψ(xα, z) is allowed by this symmetry.

The way theQ-symmetry works seems to imply that the orbifold we used for the
compactification should beS1/Z2 × Z′

2 instead of aS1/Z2. The behaviour of the fields
under the newZ′

2 symmetry is, in fact, very similar to its behaviour under the initial one.
To see this let us definez′ = z −L6/2 and:

(39)ψ̃
(
xα, z′)= ψ

(
xα,L6/2+ z′)= ψ

(
xα, z

)
.

Again, from Eq. (18), we can see that the Lagrangian is invariant under theZ′
2 symmetry:

(40)ψ̃
(
xα, z′)→ Ψ̃

(
xα, z′)= Γzψ̃

(
xα,L6 − z′).

We will impose the same boundary condition as forZ2:

(41)ψ̃
(
xα, z′)= Ψ̃

(
xα,L6 + z′).

Combining Eqs. (40) and (41) we get:

ψ̃±
(
xα,−z′)= ψ̃∓

(
xα, z′),

(42)ψ̃±
(
xα,L6 − z′)= ψ̃∓

(
xα,L6 + z′)

which, in terms ofψ andz, become:

ψ±
(
xα, z

)= ψ∓
(
xα,L6 − z

)
,

(43)ψ±
(
xα,−z

)= ψ∓
(
xα,L6 + z

)
.

Using this second parity we can find an explicit realization of theQ-symmetry as
follows. First, we shall define the behaviour of the fermions under this symmetry in the
region I as,

(44)ψ ′(z) = Qψ(z) = Γ7ψ(z)

now, Eq. (43) relates region I one and region II of the orbifold—as it should be since the
physical space in aS1/Z2 × Z′

2 goes from 0 toL/2—so in order forQ to be a symmetry
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of the Lagrangian the fermions have to satisfy,

(45)Qψ(L6 − z) = ψ ′(L6 − z) = Γzψ
′(z) = ΓzΓ7ψ(z) = −Γ7ψ(L6 − z),

where in the second and last equalities we have used Eq. (43) which can also be written as
ψ(xα, z) = Γzψ(xα,L6 − z).

Notice that this realization of theQ-symmetry is only possible in an even number
of space–time dimensions since it is only in this case that there exists a matrix which
anticommutes with all of the gamma matrices of the algebra and which does not belong to
the algebra.

With the above definitions, it is straightforward to see that the Yukawa coupling

(46)LY = f

2

(
ψ̄
(
xα, z

)
ψ
(
xα,L6 − z

)− ψ̄
(
xα,L6 − z

)
ψ
(
xα, z

))
Φ
(
xα, z

)
,

is invariant under allZ2, Z′
2 andQ symmetries whereQΦ(xα, z) = Φ(xα, z). Further-

more, the action of the three parities forbids the presence of another non-local Hermitian
term, i(ψ̄(z)ψ(L6 − z) + ψ̄(L6 − z)ψ(z))Φ(xα, z). In fact, Eq. (43) renders the above
term to be identical to zero.

In terms ofχ andη. Eq. (46) becomes

LY1 = f

2

{(
χ̄
(
xα, z

)
η
(
xα,L6 − z

)− χ̄
(
xα,L6 − z

)
η
(
xα, z

))
(47)−

(
η̄
(
xα, z

)
χ
(
xα,L6 − z

)− η̄
(
xα,L6 − z

)
χ
(
xα, z

))}
Φ
(
xα, z

)
.

As before, the minimum energy solution forΦ is

(48)〈Φ〉 = h(z).

From (34) and (47), the equation of motion for the surviving zero modeξχ,0(z) has the
form:

(49)−∂zξχ,0(z)+ if h(z)ξχ,0(L6 − z) = 0 .

In order to solve Eq. (49), we shall use Eq. (43) that, in terms ofχ andη leads to,

(50)ξχ,0(L6 − z) = ξχ,0(z) .

Because of the factori in Eq. (49)ξχ,0(z) will not be localized alongz.
The solution to (49) with the ansatz (50) is now given by

(51)ξχ,0(z) = 1√
L
eis(z),

where

(52)s(z) = f

z∫
0

dz′ h(z′).

Making the SHO approximation as used in the five-dimensional case (a) statement to be
justified below, the properly normalized wave function forξχ,0(z) would be

(53)ξχ,0(z) = 1√
L6

eiµ
2z2

.
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From the above solution for the zero mode in the 6th dimension, Eqs. (51), (53), we
notice a marked difference with the 5-dimensional case: the zero mode wave function
is now oscillating inside the thick brane, along the sixth dimension, while in the five-
dimensional case, its counterpart has a localized form along the fifth dimension.

Let us assume there is a kink solution forΦ, i.e.,

(54)h(z) = v tanh(µz),

whereµ = (λ/2)1/2v. With this solution (54) put into (52), the explicit expression for the
non-vanishing zero mode is now

(55)ξχ,0(z) = 1√
L6

eif v ln(cosh(µz))/µ.

Just as we have done with the five-dimensional case, one could generalize the above
discussion to include a “mass term” so thatfh(z) → f h(z)−m. As a result, one now has

(56)ξχ,0(z) = 1√
L6

ei(f v ln(cosh(µz))/µ−mz).

This more general expression (56) in fact determines the phase of the oscillation.
In the construction of the mass matrices in four dimensions, we will need overlaps of

wave functions in the extra dimensions, as we have discussed above in regards with the
fifth dimension. How the mass matrices look like in six dimensions is the topic which will
be discussed next.

We end this section by presenting another type of Yukawa coupling which is used
to actually localize fermions along the fifth dimension. The only difference with the
previous section is that we now write it using the full six dimensions. WithΓ7 defined
in Appendix A, the appropriate coupling is

(57)SYuk2 =
∫

d6x f ′ψ̄Γ7Φ
′ψ.

Defining γ̃5 = iΓyΓ7, one can see that Eq. (57) is invariant underψ(xµ,y, z) →
±γ̃5ψ(xµ,L5 − y, z) and Φ ′(xµ, y, z) → −Φ ′(xµ,L5 − y, z) which finally gives
ψ±(x,−y, z) = ±γ5ψ∓(x, y, z) and Φ ′(x,−y, z) = −Φ ′(x, y, z). Also Eq. (57) is
invariant under theQ-symmetry provided thatQΦ ′(xµ, y, z)= −Φ ′(xµ, y, z). Notice that
Eq. (57) can also be written as

(58)SYuk2 =
∫

d6x f ′(χ̄Φ ′χ − η̄Φ ′η
)
.

Eq. (58) will reduce to the usual coupling in five dimensions. One last comments in
order. Eq. (57) is also invariant under a simultaneousZ2-transformation:ψ(xα, z) →
Γzψ(xα,L6 − z), Φ ′(x, y, z)→ Φ ′(x, y,L6 − z), as well as under theQ-symmetry.

Before leaving this section, we would like to make a remark concerning Eq. (43).
Basically, it is a “mapping” of region I into region II and vice versa, namely,ψ(xα, z) =
Γzψ(xα,L6 − z) or ψ(xα,L6 − z) = Γzψ(xα, z). Now, let us remember that Eq. (43)
is a consequence of our boundary conditions. When we substitute it into Eq. (46) so
that one deals with the physical space which is now ranging from 0 toL6/2, it acquires
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a Lorentz non-invariant form̄ψ(xα, z)Γzψ(xα, z). What this says is that our boundary
conditions break the six-dimensional Lorentz invariance down to a five-dimensional
Lorentz invariance. Our original Lagrangian (46) isLorentz invariant under the full six-
dimensional Lorentz group and only when one goes to the physical space dictated by the
boundary conditions, the six-dimensional Lorentz invariance is broken down to the five-
dimensional one.

3.2. (Almost) pure phase mass matrices

We shall use the same notations as in Section 2.2. The action for the Yukawa interaction,
in six dimensions, between the quarks and the SM Higgs field, is written as (the down
sector is treated in exactly the same manner)

(59)SYukawa=
∫

d6x κU
∑
i

QT
i C6H

∑
j

Uc
j + h.c.,

whereC6 = Γ0Γ2Γz. We have, for the moment, omitted to write down other possible terms
which are needed to determine the phases along the sixth dimension. This will be dealt
with in the next section. We first begin with a “phenomenological” analysis.

The previous analysis led us to write a generic (zero-mode) fermion field as

(60)Ψ (x, y, z)= ψ(x)ξ5(y)ξ6(z).

Before making use of Eq. (59) to construct the mass matrix, let us describe a possible
“geography” of the fermions along the extra dimensions. The discussion of Section 2.2
pointed out the following features: the localization, along the fifth dimensiony, of Qi at
one place andUc

i at another place produces a democratic mass matrix as shown in Eq. (16).
That is the “geography” along the fifth dimension that we would like to keep. Basically,
left- and right-handed fields are localized by two domain walls at different locations. Why
this should be so is beyond the scope of this paper. However, one important point that
should be kept in mind is the fact that, in our model, there are only two locations (left and
right) along the fifth dimension, regardless of the family index, for each quark sector (up
or down). As mentioned above, this gives rise to the universal effective Yukawa couplings
gY,u andgY,d which determine the overall mass strength for each sector. Let us recall that
gY,u andgY,d are proportional to the overlap between left and right for the up and down
sectors, respectively. Again, what splitsgY,u from gY,d is beyond the scope of this paper.
However, we will make some remarks concerning this issue at the end of the paper.

The next question concerns the locations of various domain walls along the sixth
dimension. At the end of this section, we will present a simple example which shows
how one can localize these domain walls. For the moment, we will simply parametrize
these locations as shown in Eq. (56). We will assume that the domain walls which “fix”
the phases for the three families are located at different positions alongz. For the purpose
of illustration, we will stay with this simple picture of family breaking in this manuscript.
A more general case with phenomenological applications will be dealt with elsewhere.
This will involve different profiles for different family kinks, etc.

We shall discuss below the implications of the cases when, for each family,Q andUc

are “in phase” and when they are slightly “out of phase”. But, first, let us use Eq. (60) and
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Eq. (59) to construct a general generic mass matrix for the up sector. The mass matrix for
the down sector will be obtained in exactly the same manner.

In the following, the quantityL6 which appears in various formulas is a generic symbol
for the length of the physical space, which isL6 itself for the orbifoldS1/Z2 or L6/2 for
the orbifoldS1/(Z2 ×Z′

2).
To begin, we will assume the following situation for the “geography” of family domain

walls along the sixth dimensionz. We will then discuss special cases of such a scenario. (As
we have briefly mentioned above, this scenario is presented for the purpose of illustration
and is not the most general case.) Let us define the following quantities which appear in
Eq. (56):

(61)f vi/µi ≡ ai, mi;Q,Uc ≡ mi,∓,

where i = 1,2,3 denotes the family index and whereµi = (λ/2)1/2vi . Notice that, in
principle, the quartic couplingλ can depend on the family indexi. This more general
case, however, will be investigated elsewhere. From Eqs. (59), (60), one can write an
effective Yukawa interaction in four dimensions and construct a mass matrix as we had
done earlier. This construction is identical to the five-dimensional case, except that now
the matrix elements will contain an extra factor which is the overlaps ofξ6(z)’s. As usual,
the mass matrix will be similar to Eq. (16) except that now, instead of the matrix elements
being unity, one has

(62)M = gY,u
v√
2

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
,

where

ajj =
∫

dz ξ∗
6,j+ξ6,j−

= 1

L6

L6∫
0

dz exp
(
i(mj+ −mj−)z

)
(63a)= (

exp
(
i(mj+ −mj−)L6

)− 1
)/

i(mj+ −mj−)L6,

aij =
∫

dz ξ∗
6,i+ξ6,j−

(63b)

= 1

L6

L6∫
0

dz exp
(
i
(
aj ln

(
cosh(µj z)

)− ai ln
(
cosh(µiz)

)+ (mi+ −mj−)z
))

.

Notice thatL6 here is a generic symbol for the length of the physical space as we have
mentioned above.

The above equations (62), (63a), (63b) refer to the case where domain walls, which
“determine” the phases of the fermions, are “located” at different places. We will specialize
below to a few interesting possibilities. However, some important remarks can already
be made. We ask the following question: under what conditions will the mass matrix be
Hermitian or non-Hermitian?
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3.2.1. Hermitian and non-Hermitian mass matrices
We now present two different scenarios.
(a) The parametersmi± which determine the “locations” of the domain walls possess

interesting features. The first observation one can make is as follows. If the domain walls
which “localize” the phases ofQ andUc (left and right), foreach family, are located at the
same place alongz, i.e.,

(64)mi+ = mi−

one obtains the following results

(65a)ajj = 1,

(65b)aji = a∗
ij .

The mass matrixM is Hermitian! The hermiticity of the mass matrix is aconsequence
of the “collapse” of left and right (orQ andUc), for each family, into the “same position”
along the sixth dimension. Two remarks can be made concerning a Hermitian matrix. First,
its determinant isreal. This means that arg(detM) = 0. The possible connection of this
statement with the strong CP problem (see, e.g., a review by [8]) will be explored further
at the end of the paper.

Let us first see if the Hermitian matrix above is of a pure phase form.
The discussion which follows will deal with issues which are also relevant to the non-

Hermitian case.
Let us look at

(66)aij = 1

L6

L6∫
0

dz exp
(
i
(
aj ln

(
cosh(µjz)

)− ai ln
(
cosh(µiz)

)+ (mi −mj)z
))

.

Under what conditions wouldaij ’s look like pure phases, namely, of the formeiθ , or an
almost pure phase of the form(1−ρ)eiθ with ρ � 1? To answer this question, let us make
a little detour to the meaning of wave function overlaps, thickness of domain walls and size
of the extra dimensions.

We have seen how one can localize fermions along the fifth dimension (y) by having
domain walls of sizes 1/µ � L5. The effective strengths of various interactions are
determined by the overlaps of the wave functions alongy. For this reason, it is preferable
to have the thickness of the domain walls small enough, i.e., 1/µ � L5, so one can “fit”
several fermions alongy in such a way as to obtain desirable effects such as “slow” (or
no) proton decay, possible mass hierarchies between different fermion sectors (quarks,
leptons), etc. As we move on to the sixth dimension, it is not obvious that such a picture
is still necessary. In fact, at least as far as the pure phase mass matrix is concerned, the
thickness of these domain walls can be as large as the size of the compactified dimension
itself, as we shall see below.

Let us, for the time being, assume that all domain wall thicknesses (alongz) are of the
size of the compact dimension, i.e., 1/µi ∼ O(L6). In this situation, one can use the SHO
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approximation and carry out the integration of Eq. (66), namely,

(67)aij = 1

L6

L6∫
0

dz exp
(−i

(
:µ2

ij z
2 −:mij z

))
,

where

(68a):µ2
ij ≡ (1/2)

(
aiµ

2
i − ajµ

2
j

)
,

(68b):mij ≡ mi −mj .

The integration can be explicitly carried out. One obtains

(69)aij =
√
π

2

erf
( i(2:µ2

ij L6−:mij )

2
√
i:µ2

ij

)+ erf
( i:mij

2
√
i:µ2

ij

)
√
i:µ2

ij L6

exp

(
i
(:mij )

2

4:µ2
ij

)
.

In a phenomenological application of Eq. (69), one can use it without making any
approximation. However, in order to see if it has a more familiar pure phase form or not,
we will make an expansion of (69).

Let us define

(70)
√
:µ2

ij L6 ≡ xij ,

(71):mij L6 ≡ yij .

Forxij , yij < 1, one can expand (69) giving

(72)aij =
{

1− 2

45
x4
ij − 1

24
y2
ij + 1

12
x2
ij yij

}
exp

{
i

(
yij

2
− x2

ij

3

)}
,

where we have neglected terms ofO(x8
ij , y

4) or less in the modulus and terms ofO(x6
ij , y

4)

in the phase. Notice that foraji , one hasx2
ji = −x2

ij andyji = −yij , and henceaji = a∗
ij

as they should. In this form one can see that the Hermitian mass matrix isalmost of the
pure phase form. This would have been the case if one could neglect terms containingxij
andyij inside the coefficient multiplying the exponential. However, we will not neglect
those terms, leaving the possibility of a small deviation [9] from a pure phase mass matrix.

Notice that when the domain walls are all located at the same point, i.e.,:mij = 0,
and when they have the same thickness (orµi = µj ), ∀i, j , one recovers the DMM form,
namely,aij = 1, as one can see from Eqs. (66), (67), (72). In addition, we notice that one
can also obtain the almost-pure phase Hermitian mass matrix when either:mij �= 0 or
:µ2

ij �= 0, but not necessarily both, as can easily be seen.
(b) As we have seen above, within the framework of Eqs. (63a), (63b), the mass matrix

can be purely Hermitian provided the conditionmi+ = mi− is fulfilled. What would
happen ifmi+ �= mi−? To study this question, let us refer back to Eqs. (63a), (63b), (72)
and let

(73)mi+ −mi− = εi .
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Also for convenience, let us define

(74)δi = εiL6.

With the above definitions, the diagonal matrix elements which are no longer unity, can be
written as

(75)aii = exp(iδi/2)
sin(δi/2)

(δi/2)
.

The off-diagonal elements are similar to Eq. (72), except that now one has the following
replacementyij → yi+,j− = (mi+ − mj−)L6. It is convenient to remove the phases from
the diagonal elements by absorbing the phases intoξ6,i+, namely,ξ6,i+ = exp(iδi/2) ξ ′

6,i+.
From the definitions ofaii andaij , one now has

(76)aii = sin(δi/2)

(δi/2)
,

aij =
{

1− 2

45
x4
ij − 1

24
y2
i−,j− + 1

12
x2
ij yi−,j− − 1

12
yi−,j−δi − 1

24
δ2
i + 1

12
x2
ij δi

}
(77)× exp

{
i

(
yi−,j−

2
− x2

ij

3

)}
,

where

(78)yi−,j− = (mi− −mj−)L6.

Notice that yi−,j− = −yj−,i−. In Eq. (77), we have made use of the above phase
redefinition and of (73), (74). The mass matrix described by the above elements isnot
Hermitian for the following reason. The modulus ofaji will have a term− 1

12yj−,i−δj −
1
24δ

2
j + 1

12x
2
jiδj = 1

12yi−,j−δj − 1
24δ

2
j − 1

12x
2
ij δj . It can easily be seen that|aij | �= |aji |

unlessδj = −δi which cannot be satisfied for allj . Despite the fact that the phase ofaji
is the negative of that ofaij , the difference in moduli implies that, in general,aji �= a∗

ij ,
and hence thenon-hermiticity of the matrix. It can be approximately Hermitian if one can
neglect the terms containingδi in (77).

Notice that, even for the special case where all “left-handed” family domain walls are
“located” at one point alongz, i.e.,mi− = mj− = m−, so thatyi−,j− = 0, and all “right-
handed” family domain walls at another place, i.e.,δi = δ, the non-hermiticity still appears
in the difference in moduli betweenaji andaij because of the presence ofδ.

From the above discussion, one can see that one recovers the Hermitian matrix in the
limit δi → 0.

In summary, we have shown that, in general, the deviation from hermiticity in our
framework comes from the splitting between “left” and “right”, namely,mi+ �= mi−.

The above analysis can be carried over to the down sector in exactly the same manner.
There are, however, two interesting remarks that can be made. First, although the mass
matrix for the down sector is now characterized by a universal strengthgY,d which is in
general different fromgY,u, the matrix itself can be identical to the one for the up sector if
we consider scenario (a). The reason is that scenario (a) is one in which the domain walls
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for Q andDc , for each family, are “located” at the same place along the sixth dimension,
which is exactly the same as for the up sector. Therefore, the matrix elements (without the
universal strength) arethe same. In consequence, the diagonalization matrices arethe same,
i.e.,VU ≡ VD. Hence,VCKM = V

†
UVD = 1, a mere unit matrix. In other words, the mass

matrices for the up and down sectors cannot beboth Hermitian. To obtain a non-trivial
CKM matrix, at least one of the two matrices has to be non-Hermitian in this particular
scenario.

The above (almost) pure phase mass matrix as obtained from six dimensions is what we
have set out to derive. From it, we have learned a few things.

(a) In general, the almost pure phase form of the mass matrix can be easily seen if
the thickness of various domain walls along the sixth dimension is of the order of the
compactified sixth dimension. (There is no reason why, in principle, the thickness of the
domain walls should be much smaller than the compactified dimension, in contrast with
the five-dimensional case.)

(b) When the domain walls “fixing” the phases forQ andUc , for each family, are
located at the same place, (mu,i+ = mu,i−), the mass matrix is purely Hermitian. As we
have seen above, another possibility is when the domain walls “fixing” the phases forQ

are at one location and those which are responsible for “fixing” the phases ofUc are at
another location, in which case the mass matrix is also Hermitian. If one considers these
cases to be a “tree-level” situation (a) statement to be further clarified below, the fact that
arg(detM) = 0 makes this scenario an interesting “candidate” for a solution to the strong
CP problem.

(c) The mass matrix becomesnon-Hermitian when mu,i+ �= mu,i−. We will briefly
discuss below the possibility thatmu,i+ �= mu,i− is due to “radiative corrections” of the
casemu,i+ = mu,i−.

The mass matrix for the down sector is obtained in a similar way. The main difference
between the two sectors is the “universal” strength which appears in front of the matrix:
gY,u

vu√
2

for the up sector andgY,d
vd√

2
for the down sector. The other difference in the case

of a non-Hermitian matrix (scenario (b)) is the splitting between “left” and “right” for each
family, which does not have to be the same for the two sectors.

Notice that, in order to be more general, we allow the possibility of two different mass
scales:vu andvd . If there were onlyone SM Higgs field thenvu = vd = v. In this case,
the disparity between the mass scales of the up and down sectors would come from the
difference betweengY,u andgY,d , which, in turns, could come from the differences between
wave function overlaps, along the fifth dimension, of the two sectors (modulo differences
in the fundamental Yukawa couplings). To keep our discussions as general as possible, we
also allow for the possibility that two SM Higgs fields exist.

It is beyond the scope of this paper to discuss in detail the phenomenology of our model.
It will be carried out elsewhere.

3.2.2. Some remarks on localization of family domain walls along the sixth dimension
In this section, we will briefly discuss one way to localize the various domain walls

responsible for “fixing” the phases of fermions along the sixth dimension. There are
probably several mechanisms to achieve this. We will present one of such mechanisms,
from the point of view of effective field theory.
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For simplicity, we shall assume in this section thatai = a = f/
√
λ/2. This simple

assumption basically refers to couplings between fermions and background scalar fields
which are invariant under the family symmetry.

First, let us list the parameters that we need to construct an almost pure phase mass
matrix. From Section 3.2.1, we learned that we need:µi with i = 1,2,3 which control
the thicknesses of the domain walls andmi± which control the locations of the domain
walls. We also learned that, one can obtain a Hermitian mass matrix whenmi+ = mi− and
a non-Hermitian matrix whenmi+ �= mi−. It turns out to be a highly non-trivial task to find
a mechanism which can “explain” the origin of these parameters. In some sense, it might
even be overly ambitious to make such a claim. We will, however, make an attempt to, at
least, hint at one possible scenario.

In Section 3.2.1, we were basically doing the “geography” of family domain walls along
the sixth dimension. To construct a scenario for the “geographical points” (the variousm’s),
let us recall that the family symmetry of our model isSQ

3 ⊗ SUc

3 . The background scalar
fields which couple toQ or Uc will appear in terms such as�QΦQ, �UcΦUc . We will,
therefore, need two of such background fields in order to write down invariant Yukawa
couplings:ΦQ andΦUc . These background fields,ΦQ andΦUc , will be represented by
3 × 3 matrices. Some of the details concerning the potential for these scalars are given in
Appendix B. Here, we will just quote the results. The discussion below refers to the up
sector. As we have seen earlier, the down sector can be treated in exactly the same manner.

We will concentrate on scenario (a) of Section 3.2.1 for the purpose of illustration. We
will assume the following Yukawa interactions:

(79)LY = f �QΦQQ + f �UcΦUcUc + h.c.,

where, for simplicity, we have put the two Yukawa couplings to be equal. (A more general
case can be accommodated straightforwardly.) The minimization of the potential gives, at
tree level,

(80)〈ΦQ〉 =
(
h1(z) 0 0

0 h2(z) 0
0 0 h3(z)

)
.

One could assume that, at some deeper level and because of the family symmetry, the two
background fields behave in exactly the same manner, i.e., having similar parameters, and,
in consequence, one has

(81)〈ΦUc 〉 =
(
h1(z) 0 0

0 h2(z) 0
0 0 h3(z)

)
.

These VEVs will be shifted by radiative corrections. It is beyond the scope of this paper to
examine this problem and we will simply parametrize these shifts by

(82)hi(z) → hi(z)+ δhi,

where the shifts are assumed to be independent ofz and are also assumed to be much
smaller thanvi (or µi ).
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Combining Eq. (82) with Eq. (79), one can make the following identification

(83)mi− = mi+ = f δhi .

This is the case when one would obtain a Hermitian mass matrix of scenario (a) of
Section 3.2.1! It goes without saying that there are two assumptions which have been
made. First, we have assumed the equality of the Yukawa couplings in Eq. (79). Second, we
have assumed that the behaviour of the two background scalar fields are identical. These
assumptions might come from some deeper symmetry betweenQ andUc (or Dc). This is
very similar to the notion of left–right symmetry that one encounters in four-dimensional
model building. In consequence, the hermiticity of the mass matrix that we obtained by
“phenomenologically” puttingmi− = mi+ might be justified by some form of left–right
symmetry.

In addition (82), one should also take into account vertex corrections which will be
different for Q and Uc (they have different gauge interactions, for example). Let us
parametrize those shifts by

(84a)f̃Q = f + δfQ,

(84b)f̃U = f + δfUc,

where the notations are self-explanatory. We will assume thatδfQ,Uc � f . Naturally,
f̃Q �= f̃U .

From the above equations, one can make the following identifications:

(85a)mi− = f̃Qδhi,

(85b)mi+ = f̃U δhi .

Since one expectsδfQ �= δfUc and, in consequence,̃fQ �= f̃U , one would expect, in
general,mi+ �= mi− which is a condition for the appearance of a non-Hermitian matrix.
However, an approximate Hermitian matrix could arise if the radiative corrections and, in
particular, the difference in the radiative corrections are small. One can see that, as we turn
off whatever interactions (gauge, etc.) which contribute to the vertex correctionsδfQ,Uc ,
one recovers the Hermitian case, namely,mi− = mi+.

Pursuing the same idea, one can also assume thatDc ’s have a similar coupling of the
formf �DcΦDcDc . Assuming that〈ΦDc 〉 has a similar form to Eqs. (80), (81), one can now
see that, in the absence of vertex corrections, one obtainsmi− = mi,u,+ = mi,d,+, which is
just scenario (a) discussed above. SinceDc andUc have different quantum numbers, one
expects that their vertex corrections will be different from each other. In consequence, one
will obtain mass matrices of the form (62) with coefficients of the form (63a), (63b).

In the scenario just outlined above, one can make interesting connections with the strong
CP problem. In the absence of vertex corrections, the mass matrix isHermitian and hence
arg(detM) = 0, a possible solution to the strong CP [8] problem? (One could assume CP to
be a symmetry of the Lagrangian so thatθQCD = 0.) As mentioned above, this hermiticity
might come from some left–right symmetry (Q ↔ Uc,Dc) which givesmi− = mi+ at
“tree level”. It could be quite provocative to see if there are connections, if any, with
previous solutions to the strong CP problem which made use of the quintessential left–
right symmetry [13].



P.Q. Hung, M. Seco / Nuclear Physics B 653 (2003) 123–150 145

Turning on the vertex corrections, the pure phase mass matrix becomes non-Hermitian
and, as a consequence, one would obtain a non-zero contribution to the strong CP
parameter̄θ . If this were truly a plausible scenario for the strong CP problem, the resultant
θ̄ should obey the upper bound of∼ 10−9. However, it is beyond the scope of this paper to
analyze its magnitude. We will come back to this issue in a subsequent paper. Our future
studies will focus on the following two questions. Will the “radiative corrections” be small
enough so as to account for both the phenomenological constraints on the mass matrices
and the magnitude ofθ̄? If those phenomenological constraints on the mass matrices
require a “large” radiative correction, is there a “natural” mechanism to makeθ̄ small
enough?

4. Conclusion

In this paper, we have studied the problem of fermion mass hierarchy from the point of
view of large extra dimensions. To this end, we have added two extra compact spatial
dimensions. In particular, we have shown how one can construct a particular kind of
mass matrices which is very successful in fitting the pattern of quark masses and mixing
angles: the pure phase mass matrix. This matrix is characterized by a universal Yukawa
strength appearing in front of a matrix whose elements are of the form exp(iθij ). In our
construction, the universal Yukawa strength arises from the overlap of the wave functions
of the left-handed quarks (denoted byQ) and the right-handed quarks (denoted byUc and
Dc) along the fifth spatial dimension (y). Along y, all left-handed families are localized
at one place and all right-handed families at another place, with the localization carried
out by domain walls whose thicknesses are assumed to be much smaller than the radius of
compactification ofy. We then proceed to show that the almost pure phase mass matrix
arise from the overlap of wave functions between different families and also between
left-handed and right-handed quarks, along the sixth dimensionz. Along z, the “phase
determination” is carried out by domain walls whose thicknesses are assumed to be of the
size of the radius of compactification ofz.

We would like to stress again that the results obtained in this paper depend purely on
the “geography” of the domain walls along the extra dimensions.

The almost-pure phase mass matrices obtained in six dimensions have some interesting
properties, according to the “locations” of the family domain walls, which fix the phases,
along the sixth dimension. In one case (scenario (a)) which is dubbed “tree level” in this
paper, the domain walls forQ andUc or Dc are “located” at the same place along the
sixth dimensionz, for each family. The mass matrices thus obtained are purelyHermitian.
In addition, apart from a different universal Yukawa strength, the matrices of the up and
down sectors are identical, giving rise to a situation in which the CKM matrix is simply a
unit matrix. We then considered a scenario in which either the domain wall forUc or Dc ,
or both, is split from that forQ. As we have shown in Section 3.2.1, this would imply that
the mass matrix of at least one of the two sectors is non-Hermitian, and the two matrices
will be different from each other, implying a non-trivial CKM matrix.

One should also keep in mind the possibility that the mass matrices of both sectors
are Hermitian but not identical. In this type of scenario, one would get a non-trivial
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CKM matrix as well as a correct spectrum. This possibility is mentioned at the end of
Section 3.2.1. In order to be able to build a model for the “locations” of various quarks
along the extra spatial dimensions, a full phenomenological analysis of various possibilities
should be carried out to serve as a guidance.

These two cases of Hermitian and non-Hermitian mass matrices might have important
connections to the strong CP problem as we have briefly discussed above. This interesting
issue will be further investigated in a future paper.

Finally, a number of interesting issues such as the Kaluza–Klein modes, the extension
to the lepton sector, and others will be dealt with in future publications.
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Appendix A

In this appendix we are going to present a brief review of the spinorial representations
of the orthogonal group,O(D), in higher dimensions (D > 4). We are going to follow
closely the treatment done by Weinberg in his book [14], with a slightly different notation.
Notice that the first paper on this subject was written by Mohapatra and Sakita [15].

The starting point is a set of matrices, which spawn the Clifford algebra, with the
anticommutation relations{γµ, γν} = 2δµν . In addition, our attention will be fixed on
spaces of even dimensionality (D = 2n) and, subsequently, we will extend it to odd
dimension spaces.

Using the anticommutation relations of theγ matrices, we can definen fermionic
harmonic oscillators asa+

i = 1
2(−γ2i + iγ2i+1) with i = 0, . . . , n− 1, that are independent

and, therefore, the set of basis vectors of the representation space has 2n elements which
can be written as:

(A.1)|s1s2 . . . sn〉 = a+
1
s1a+

2
s2 · · ·a+

n
sn |0〉

being|0〉 a vacuum annihilated by all destruction operatorsai . In this basis the matricesai
take the form:

(A.2)ai =
(−1 0

0 1

)
⊗ · · · ⊗

(−1 0
0 1

)
⊗
(

0 1
0 0

)
⊗ I2×2 ⊗ · · · ⊗ I2×2

the−1’s are due to the fact thata+
i anda+

j anticommute. Finally theγ matrices can be
easily obtained and they read as:

γ2i = −σ3 ⊗ · · · ⊗ σ3 ⊗ σ1 ⊗ I2×2 ⊗ · · · ⊗ I2×2,

(A.3)γ2i+1 = σ3 ⊗ · · · ⊗ σ3 ⊗ σ2 ⊗ I2×2 ⊗ · · · ⊗ I2×2,
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whereσi ’s are the Pauli matrices. Note that this representation does not give the usual
representation in four dimensions but we can relate both using the following unitary
transformation:

(A.4)U = 1

(
√

2)n
(σ3 + σ2)⊗ · · · ⊗ (σ3 + σ2)

so the “usual” representation is

γ2i = σ2 ⊗ · · · ⊗ σ2 ⊗ σ1 ⊗ I2×2 ⊗ · · · ⊗ I2×2,

(A.5)γ2i+1 = σ2 ⊗ · · · ⊗ σ2 ⊗ σ3 ⊗ I2×2 ⊗ · · · ⊗ I2×2.

Since,

(A.6)γ2iγ2i+1 = iI2×2 ⊗ · · · ⊗ I2×2 ⊗ σ2 ⊗ I2×2 ⊗ · · · ⊗ I2×2

the product of the 2n γ matrices is:

(A.7)
2n−1∏
i=0

γi = inσ2 ⊗ · · · ⊗ σ2 = ηγ2n.

Whereη is a phase such thatγ2nγ2n is the identity. Note that we are labeling the gamma
matrix equivalent toγ5 with 2n instead 2n+ 1. This difference comes from our choice for
the labeling starting from 0 instead of 1. This new matrix anticommutes with allγ ’s and
therefore it implies that all spinorial representations ofO(2n) are reducible.

Let us find now the spinorial representations of the orthogonal groups with odd
dimensionality,D = 2n + 1; this is much more simpler once we have the representation
for O(2n) since we just have to take this representation and add theγ2n matrix. In this
case the representation is irreducible because we cannot find any independent matrix that
anticommutes with all the gamma matrices.

The transition of theO(D) representations toO(D − 1,1) representations is done
through a wick rotation.

To finalize we will explicitly write the gamma matrices forO(5,1).

• Six dimensions (with metric(−+++++)):

Γ0 = iσ2 ⊗ σ1 ⊗ I2×2 =
(

04×4 −γ0
γ0 04×4

)
,

Γ1 = σ2 ⊗ σ2 ⊗ σ1 =
(

04×4 −γ1
γ1 04×4

)
,

Γ2 = σ2 ⊗ σ2 ⊗ σ2 =
(

04×4 −γ2
γ2 04×4

)
,

Γ3 = σ2 ⊗ σ2 ⊗ σ3 =
(

04×4 −γ3
γ3 04×4

)
,

Γy = σ2 ⊗ σ3 ⊗ I2×2 =
(

04×4 −iγ5
iγ5 04×4

)
,
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Γz = σ1 ⊗ I2×2 ⊗ I2×2 =
(

04×4 I4×4
I4×4 04×4

)
,

(A.8)Γ7 = σ3 ⊗ I2×2 ⊗ I2×2 =
(

I4×4 04×4
04×4 −I4×4

)
.

Notice that, in the above equations,γ µ (µ = 0,1,2,3) andγ5 are simply definedhere
asγ0 = σ1 ⊗ I2×2, γi = iσ2 ⊗σi , γ5 = σ3 ⊗ I2×2. These definitions just happen to coincide
with the 4-dimensional ones with a metric(+ − −−). This is simply a compact way of
writing the 6-dimensionalΓ ’s. There isno change in metric. To see how the 6-dimensional
metric (− + + + ++) reduces to a 4-dimensional metric(− + ++) when the two extra
spatial dimensions are compactified, one rewritesγ µ in terms of the gamma matrices which
correspond to the metric(− + ++), namely,γ̃ µ = iγ µ. In this way, the kinetic terms will
be preceded with a plus sign when they are reexpressed in terms ofγ̃ µ. Of course,γ5
remains unchanged.

Appendix B

In this article, we had been discussing models in which fermions are localized at one
place or another along the extra dimensions and inside fat branes with the same or different
widths and how these settings could affect the phenomenology of the 4D models. However,
we did not provide any model that explains these different settings; this will be addressed
in this appendix.

As an example, we are going to study the possibility that the background scalar field is a
composite of fields that transforms under a three-dimensional representation of the family
group; therefore, this background scalar fieldΦ takes the form:

(B.1)Φ(x) =
(
φ1(x)

φ2(x)

φ3(x)

)
⊗ (

φ1(x)φ2(x)φ3(x)
)+

,

where theφi ’s are the “fundamental fields” from which the background scalar field is
composed.

The first of the models we are going to propose consists on aφ4 potential, without cubic
terms, for 2 composite fields of the form (B.1),

V (Φ1,Φ2)

= m2
1

2
Tr
[
Φ1Φ

+
1

]+ m2
2

2
Tr
[
Φ2Φ

+
2

]+ m3

2

(
Tr
[
Φ1Φ

+
2

]+ h.c.
)

+ λ1

4
Tr
[(
Φ1Φ

+
1

)2]+ λ2

4
Tr
[(
Φ2Φ

+
2

)2]+ λ3

2
Tr
[(
Φ1Φ

+
1

)(
Φ2Φ

+
2

)]
+ λ4

4

(
Tr
[
Φ1Φ

+
2 Φ1Φ

+
2

]+ h.c.
)

= m2
1

2
|Φ1|2 + m2

2

2
|Φ2|2 +m3|Φ1||Φ2|cos2α
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+ λ1

4
|Φ1|2 + λ2

4
|Φ2|2 + λ3

2
|Φ1|2|Φ2|2 cos2α

(B.2)+ λ4

2
|Φ1|2|Φ2|2 cos4α,

wherem2
1,2 are negative coefficients. We also made use of the following definitions,

(B.3)|Φ|2 = Tr
[
ΦΦ+],

(B.4)cos2α = Re

(
Tr[Φ1Φ

+
2 ]

|Φ1||Φ2|
)
.

If 2m3 > −(λ3 + λ4 cos2α)|Φ1||Φ2| holds then the minimum of the potential occurs
when both fields take expectation values along orthogonal directions, that is, when
Tr[Φ1Φ

+
2 ] = 0. In consequence, if we suppose that the expectation values for|Φ1| and

|Φ2| areu andv, respectively, the potential we have to minimize is:

(B.5)V (u, v) = m2
1

2
u2 + m2

2

2
v2 + λ1

4
u4 + λ2

4
v4

and its minimum is located at:

(B.6)u =
√

−m2
1

λ1
, v =

√
−m2

2

λ2
,

therefore we can suppose that,

(B.7)〈Φ1〉 =
(
u 0 0
0 0 0
0 0 0

)
,

(B.8)〈Φ2〉 =
(0 0 0

0 v 0
0 0 0

)
.

This means that this model will localize the components of the family multiplet at different
positions along the sixth dimension, namely, 0,u andv.

We can extend this model to localize all the components of the family multiplet inside
the orbifold, with the background scalar field in (46) having all three eigenvalues different
from zero. This can be done if we add another background field that can be a singlet, or a
composite like the ones used. In the former case the three components will be shifted by
the same amount,s, ending in positionss + u, s + v ands; in the later case the fermions
will be located atu, v andz (the expectation value for the third field).
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