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Abstract

A model of quark masses and mixing angles is constructed within the framework of two large extra
compact dimensions. A “democratic” almost pure phase mass matrix arises in a rather interesting
way. This type of mass matrix has often been used as a phenomenologically viable ansatz, albeit
one which had very little dynamical justification. It turns out that the idea of large extra dimensions
provides a fresh look at this interesting phenomenological ansatz as presented in this paper. Some
possible interesting connections to the strong CP problem will also be presented.

0 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The question of the origin of fermion mass hierarchy, mixing angles and CP violating
phase is one of the most outstanding problems in particle physics. There have been
numerous attempts to study this problem, some of which are more theoretical in nature
while others are more phenomenological. However, it is generally agreed that the final
word is far from being said. Furthermore, it is also agreed that the solution, whatever it
might be, is to be found outside of the Standard Model (SM).

In all of these studies, the phenomenological-ansatz approach is much more modest in
scope. Starting with some simple assumption about the form of the mass matrix whose
theoretical justification is yet-to-be-determined, one could fit quark masses and mixing
angles. One of such approaches is particularly appealing: the pure phase mass matrix
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(PPMM) [1,2]. This particular ansatz is based on a simple assumption that there is a single
and unique Yukawa coupling for each quark sector and that thé 3nass matrix takes

the form M = gy(v/«/i){exp(ieij)}, wherei, j = 1,2, 3. This kind of mass matrices
belongs to a class of the so-called “democratic mass matrices” (DMM) [3]. The pure
phase mass matrix is attractive in that the hierarchy of masses is governed by a single
Yukawa coupling in the limit where all phases vanish. A realistic hierarchy comes about
when the phases, which are treated as small perturbations, are put back in. Although it is
conceptually attractive, no attempt was made to justify its underlying assumption. Earlier
works on trying to model the pure phase mass matrix relied entirely on the framework
of four-dimensional field theories. Although there are a number of useful lessons that can
be learned from this mode of thinking, one is sometimes faced with more questions than
answers.

On another front, there has been important conceptual developments in the last few
years related to a possible existence of large extra dimensions [4,5]. Not only does this
concept force us to rethink about notions such as the question of what the ultimate
fundamental scale of nature might be, it also inspires us to reformulate some of the
longstanding problems in particle physics such as the origin of fermion masses and
mixings. The hierarchy of masses has been reexamined recently within the framework of
large extra dimensions, and new interesting ideas have emerged such as the notion of “thick
branes” and the localization of various fermions inside these branes [6]. This localization
can be accomplished by a domain wall inside the brane. This gave rise to the idea of the
strength of the Yukawa coupling (which is proportional to the mass of the fermion) as
being the overlap of the wave functions of the localized fermions. As stated in Ref. [6], it
is easy to think of the reason why some fermions are heavy and some are light: the heavy
ones have large overlap and the light ones have small overlaps. There has been some works
done along that line in order to explain the fermion mass hierarchies. Most of these works
made use of the size of the wave function overlaps to discuss the fermion mass problem.

Whatever various scenarios might be, the common important elements which transpired
from these works are basically the locations of the domain walls and the size of the wave
function overlaps. In fact, many of the physics results will depend on the actual placements
of the domain walls along the extra dimensions.

Our approach in this paper is as follows: for each fermion sector (e.g., the up and down
qguark sectors), there is a universal overall mass scale whose Yukawa coupling strength is
determined by the size of the overlap. This gives rise to a democratic mass matrix whose
elements are all equal to unity, apart from a common mass scale factor multiplied by an
effective Yukawa coupling. All that is needed is to localize all the left-handed fermions
at one location, regardless of family indices, and all the right-handed fermions at another
location along the fifth dimension inside the thick brane, and, in addition, to endow the
fermions with a permutation symmetry. Unfortunately, it is well known that this kind of
matrix does not work: one obtainge non-zero mass eigenvalue amdo zero eigenvalues.

The matrix{1} has to be replaced by another quasi-democratic one of the form such as
{exp(i6;;)}, for example. The mass hierarchy which arisethin each sector is due, in

our scenario, to the introduction of a sixth dimension and a thick brane along it. The
introduction of “family” domain walls at different locations inside this thick brane generate
different phases for different families. It will be seen that it is these phase differences
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which give rise to theure phase mass matrix or, as we shall see, an almost-pure phase
mass matrix. We would like to stress that, although a permutation symmetry was used, the
results obtained are purefgographical in nature.

We would like to make the following remark. Our model will contain a certain number
of parameters that need to be fixed phenomenologically. However, what we present here
is a new perspective on an old problem which, hopefully, can give further insights which
might be useful for future investigations. What we are doing here is to try to rephrase the
origin of quark mass hierarchy (and eventually that of the leptons as well) and CP phase
in a completely new context: that of the Compact Extra Dimensions (CED). We will show
below that the appearance of the phases in the mass matrices, a crucial element in their
construction, appear rather “naturally”. From this point of view, it appears to be a definite
conceptual advantage of the CED scenario.

One remark is in order here concerning the introduction of a sixth dimension. It is well
known that, with just one extra compact dimension, the fundamental 5-dimensional Planck
scale cannot be of the order of a few TeV or so, for it will introduce deviations to the
inverse square law on astronomical distances. Recent gravity experiments [7] down to a
millimeter or so put a lower bound of around 3 TeV on the- 4 Planck scale for the
case ofn = 2 (with equal compactification radii). This fact, of course, was not the one
motivating us in introducing a sixth dimension. It is rather the natural way in which phase
differences appear between different fermions eventually giving rise to a pure phase mass
matrix which motivated us.

The organization of the paper is as follows. First we review various features of fermions
in five dimensions, including, for instance, the concept of fermion localization. We then
show how, with a rather simple assumption, a democratic mass matrix appears. Next, we
introduce fermions in six dimensions and show how phase differences appear, and how
one can construct an (almost) pure phase mass matrix from this result. In this construction,
“family” domain walls are introduced and it is shown that their small separations along
the sixth dimension are responsible for the aforementioned phase differences. Unlike what
happens along the fifth dimension, the fermion wave functions are not of the localizing
type but are rather oscillating. We will then discuss how Hermitian and non-Hermitian
pure phase mass matrices arise. Finally, we will discuss some possible connections to the
strong CP problem [8].

2. Fermionsin 5 dimensions and democr atic mass matrix
2.1. Areview

In this section, we will review some aspects of fermions in five dimensions which have
support0, L] along the fifth dimension. In other words, we are discussing a “thick brane”
of thicknessL. This discussion serves two purposes: to set the notations and to lead to the
democratic mass matrix.

We will adopt the effective field theory approach of Refs. [10,11]. This approach has
the merit of being relatively simple and transparent as far as the physics is concerned. We
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first summarize below what has been done for the case of one flavor of fermions, without
and with a background scalar field.

To set the notations straight, the 4-dimensional coordinates will be labeled tth
uw=0,...,3 while the fifth coordinate will be labeled by. We start out with a free
Dirac spinor of SO(4, 1) which has four componentg;. The gamma matrices ane*
andy, = iys. The free Dirac Lagrangian is given by

- 0
E=1ﬂ<iﬂ+iyy5>w,

— i (i# = 15 - @
y

The above Lagrangian has the followingy, symmetry: ¥ (x,y) — ¥(x,y) =
+ysv (x, L — y). When this symmetry is combined with the periodic boundary condition:
Yx,y) =¥ (x,L+y) =y, 2L + y), one obtains:y(x,—y) = ¥(x,L — y) =
+ys¢(x, y) andyr (x, L+y) =¥ (x, y) =tys¢(x, L—y), which shows that =0, L are
fixed points. One can subsequently define the chiral componentshyfusing the usual
operatorsPg ;. = (1 £ y5)/2, with ¢4 = Pryr andy_ = Py, with ysyyr = £¢1. The
previous symmetry and boundary conditions are what usually referred to in the literature as
compactification on af1/Z2 orbifold. One can have fermions which have the symmetry
Yx,y) > ¥(x,y) = +ys¥(x, L — y), and those which havé (x,y) - ¥(x,y) =
—ys¥(x, L —y).

For simplicity, we shall discuss the cagéx, y) — ¥ (x, y) = +ys¥(x, L — y) below.
This corresponds to the case where onbht-handed zero modes survive in the brane,
as shown below. For the other situatianx, y) — ¥ (x, y) = —ys¥(x, L — y), only the
left-handed zero modes survive inside the brane, as one can easily check.

Zero modes residing in the brane are supposed to be independent of the extra coordinate,
y in this case. From the above discussion, one can se@thaanishes at the fixed points,
and hence there is no zero mode for. The only non-vanishing zero modeyg.. This
can also be seen explicitly by writing

Um+(x, y) = ¥m+()sm+ (), (2a)
![fo(X,Y):WM—(x)‘%‘M—(Y), (2b)

for a mode of masa/. From the explicit solutions far as given in Ref. [10], one can again

see that there is only one chiral zero mode inside the brane. Four-dimensional chirality is
seen to arise from the symmetry and boundary conditions. The chiral zero ypeds
uniformly spread over the fifth dimension To localize o at specific points along

inside the brane, the use of domain walls have been suggested by Refs. [6,10]. To this end,
a background scalar field, is introduced. The Lagrangian is given by

- d 1 1 A 2
L=y|if—ys— — f@ Z0H®Y, D — 23,00, — — (P> — V?)". 3
The symmetry and boundary conditions @nare now:® — P(x,L—y)=—-®(x,y);
®(x,—y)=P(x,L—y)=—P(x,y)andd(x,L+y)=D(x,y)=—P(x,L—y).ltcan
then be seen thatvanishes at the orbifold fixed points= 0, L. As discussed in Ref. [10],
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@ has a minimum energy configuratiof® (x, y)) = ¢ (y), with ¢(0) = ¢ (L) = 0. From
the modified equations fofy 1 with an added termf¢(y), one can easily see the
localization of the zero mode, namely,

Eor () =ke ™Y, & _(y) =0, (4)
where
y
S(y)=f/dy/¢(y/). (5)
0

As pointed out by Ref. [10], the chiral zero modg;.(y), is now localized either at =0
or y = L depending on the sign of¢ (y).

As in Ref. [6], the special choicg¢(y) = 242y which makes the operators =
o+ fo(y) anda’ = -3y + f¢(y) behave like the annihilation and creation operators of a
Simple Harmonic Oscillator (SHO), the normalized wave function for the chiral zero mode
£0+(y) takes on the familiar forngo, (y) = (/7z/(r/2)Y%) exp(—u2y?). One clearly
notices the localization dfp;- (y) aty = 0. Another way of describing this phenomenon is
the fact thaip has a kink solution of the forni tanh((1/2)1/2Vy) which basically traps
the fermion to a domain wall of sizgx/2)1/2v)~1[12].

The next question concerns the possibility of localizing the chiral zero mode at some
other location than the one at the orbifold fixed points. Ref. [6] has proposed to change the
Yukawa interactiony (f¢ (y))¥ to ¥ (f¢(y) —m)r so that the wave function of the chiral
fermion field is now localized at theero of f¢(y) —m instead off¢ (y). With the SHO
approximation, this zero would be at= m /2u2. However, in order to be compatible with
the Z, symmetry of the Lagrangian, as shown in Eqg. (3), one should also require a “mass
reversal’m — —m simultaneously with th&, transformations. This is the assumption we
will be making in this manuscript. (Another approach is given in Ref. [10].)

As emphasized by Ref. [6], different massless chiral fermions can be localized on
different slices alongy, inside the thick brane. These locations are determined by the
zeros of f¢ — m; = 0. Within the SHO approximation, the wave functions are given by
(JIE/ (7 /2)Y 4 exp(—p2(y — yi)?), wherey; = m; /2u2. The interesting idea proposed in
Ref. [6] is that the effective Yukawa couplings between SM fermions and SM Higgs scalar,
which eventually determines the size of the mass term, are mainly determined by the wave
function overlap between the left- and right-handed fermions. Hierarchy of masses then
appears to depend on the size of the overlaps.

From hereon, we shall turn our attentionl¢ft-handed zero modes inside the brane as
used in the SM. As we have mentioned earlier, these come from five-dimensional fermions
with the Z, symmetryy (x, y) - ¥ (x, y) = —ys¥r(x, L — y).

To prepare the groundwork for our subsequent discussion, let us write down the action
in five dimensions of a left-handed fermion, a right-handed fermion, and the Yukawa
interactions with a background scalar field, and a SM Higgs field. Following Ref. [6], we
will denote quarks in five dimensions by the five-dimensional Dirac fiel@s:U¢, D)
and theirleft-handed zero modes by the following Weyl fieldsy, u¢, d). Notice that
with this notation, a right-handed down quark, for example, wildbeSince we will be
dealing in this paper solely with the quark sector, we are not writing down the lepton fields.
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This will be dealt with in a subsequent paper. The SM transformations of the above fields
are self-evident by the use of these notations. In addition, one also introduces two sets of
scalar fields: a SM singlet background scalar figidwhose VEV is(®(x, y)) = ¢ (y),

a SM doublet Higgs fieldd (x, y) whose zero modé(x) is assumed to be uniformly
spread along inside the thick brane. The 5-dimensional action can be written as

s= / & Q(ifls+ )0+ T (ifls + f$(y) —mu)U®
+D°(ifls+ f¢(y) —mp) D +xu QT CsHU +kp QT CsH DY, ©)

whereCs = ypy2y,. From the above equation, one notices tiaty¢, D¢ are localized
atyg =0, yy =my/2u?, yp = mp/2u?, respectively. In principles:y andky can be
different frommp and«p, respectively. However, as we can see below, it is sufficient to
havemy # mp in order for the resulting masses of up and down quarks to be different,
even ifky = kp. Assuming that the zero mode &f is uniformly spread ovey inside the

thick brane, the 4-dimensional effective action for the Yukawa interaction for the up quark
can be written as

S = f d*x kyqT (X)h(x)u / dy &, (V)& (), @)

and similarly for the down quark. From the form of the wave functions, one obtains the
4-dimensional effective Yukawa couplings for up and down quarks as follows

gy =ku eXp(—szzzj/z), (8)
gv.a = kpexp(—u?y5/2). 9)

Two remarks can be made concerning Egs. (8) and (9). First of all, as emphasized by
Ref. [6], even ifk’s are of order unity, the effective Yukawa couplings can be quite small if
wyu.p > 1. Basically, the size of the effective coupling is sensitive to the relative distance
between left- and right-handed quarks as compared with the characteristic thickness of
the domain walls. The second remark concerns the Yukawa couplings in five dimensions,
ku,p- Inthis new framework of large extra dimensions, one has to separate the mechanism
which separategy , from gy 4, already at the level of the 5-dimensional action from that
which separategy , from gy 4 at an effective field theory level in four dimensions due
to different localization points along the extra dimension inside the thick brane. It might
happen that the 5-dimensional action has an up—down symmetry in the Yukawa sector
which is broken down inside the brane. We shall return to this question at the end of the

paper.
2.2. Democratic mass matrix

Let us, for now, concentrate on just one sector, e.g., the up sector. Let us assume that
there are three families. The fermion fields in five dimensions that we will be dealing with
in this section will beQ andU°¢. As we shall see below, in order to obtain the DMM
scenario, we will put all the)’s at one location along inside the thick brane, and all
the U¢’s at another location. With this simple assumption and the assumption that the SM
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Higgs zero mode is uniformly spread inside the thick brane, one can naively obtain the
democratic mass matrix mentioned above. However, with the gauge field zero modes also
spreading uniformly inside the thick brane, this will give rise to unwanted flavor-changing
neutral current (FCNC) operators. A symmetry has to be imposed in order to avoid these
FCNCs.

A simple symmetry that one can use is a permutation symmetry among the three
families, for bothQ andU¢. One can haves? ® SY°, with Q — S£ 0 andU* — sY°U*.
The background scalar field described eawi¢y) is a singlet under the above permutation
group. (In this way, one will see that af)’s are localized at one place and &lf’s are
localized at another place.) One can now include gauge interactions in the kinetic terms of
(6) by making the replacemefit — s, namely,

So= f d5x Q(iPs + £ ())Q + T (s + f$(y) — my)U*

+D(iPs + f¢(y) —mp)D°. (10)
It is simple to see thafy is invariant under the above permutation symmetry. Eq. (10) also
implies that allQ’s are localized at one place and &lf’s are localized at another place.
Next, we wish to introduce a Yukawa interaction between the SM Higgs scalapand
andUc¢. First, we notice that a term such as

Lyukawa= ku Q" CsHU + h.c, (11)

breaks the permutation symmetry sin@eand U¢ transform under different groups. If
they were to transform under tlsame permutation group, Eq. (11) would be an invariant.
However, it would give a mass matrix of the form

/100
Mzgy,u—(o 1 o) (12)
v2\p 0 1

which is not of the DMM type. It turns out that Witﬁ3Q ® SY°, one can construct an

invariant for each permutation group:; Q; for S:? andzj U]? for S:lf wherei =1,2,3
andj =1, 2, 3 are family indices. From this, one can construct an invariant action for the
Yukawa interaction

SYukawa = / d°x KU Z QlT CsH Z Uj +h.c. (13)
i J
The effective action in four dimensions can now be written as

Seff,Yukawa= / d4x Ky ZqT,i(x)h(X)uC’j / dy 5{; (y)ézif (y) + h.c. (14)
iJj
Since all theg;’s are located at the same place inside the brane, and similarly for aif the
the wave function overlap dy &, (y)&. (y) is universal andndependent of i, j. With this,
one can now rewrite Eq. (14) as
111

Seff. Yukawa= f d“xgy,un(x)(l 1 1)h(x>u°+h.c, (15)
1 1 1
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wheregy,,, is given by Eq. (8)¢” = (¢1, ¢}, ¢¥) and similarly foru®(x). From Eq. (15),
one obtains the democratic mass matrix

/111
Mzgy,u—(1 1 1). (16)
v2\1 1 1

An important remark is in order here. The universal strength in Eq. (16) depends on,
besides the SM quantity/+/2 ~ 175 GeV, gy, which is a product of two factors: the
five-dimensional Yukawa coupling,, and the overlap of left- and right-handed fermion
wave functions. In this scenario and its extension presented below, it is this product that is
important, and not simply the size of the overlap.

As we have mentioned above, the above matrix can be brought by a similarity
transformation to a form

M =Sms1t

v (O 0 0)
=gvu—=|0 0 O0]. a7)
v2\o 0 3
As one can see above, one needs to move beyond the DMM scenario in order to obtain a
more “realistic” mass matrix. This is what we propose to do in the next section.

One might wonder what the distinctive feature a fifth dimension has to give us in
regards with the above problem. Could one not obtain a similar result staying in just
four dimensions? In principle, the answer is yes. However, it appears more attractive to
think that, oncey; are lumped together at one place a(}'dare lumped at another place,
one would obtain the DMM naturally. It is interesting to envision a scenario in which the
Yukawa couplings are as universal as the gauge couplings themselves, with the possibility
that the effective Yukawa couplings can be different from one another due to the different
overlaps between left and right fermions. (Gauge interactions are chirality conserving and,
as a result, the effective gauge coupling with the gauge boson zero mode is the same as the
original coupling.)

The above discussion carries over to the down sector in a similar fashion. Obviously,
although attractive, this kind of democratic mass matrix does not give the correct mass
spectrum. An extension of DMM was discussed by Ref. [1], in which, instead of having
one’s as matrix elements, one has pure phase factors such @s; ox{The diagonal
elements can be all unity by a suitable redefinition of the quark phases.) Explicitly, a pure
phase mass matrix looks liket = gy (v/v/2)(exp(i6;;)).

To construct a model for PPMM—even for the special case such as a symmetric matrix,
one usually requires a rather complicated Higgs structure [2]. That is if one stays in four
dimensions. One might wonder if extra dimensions might help in this regards. We have
seen above how an additional dimension could help conceptually in obtaining a democratic
mass matrix. The question we ask is the following: could pure phases such @8 8xp
arise from extra dimensions and not from some kind of complicated Higgs sector? In
particular, if we keep the Higgs sector to a minimum (one Higgs), this phase cannot come
from the Yukawa coupling nor from the VEV of the SM Higgs. We have seen that, in five
dimensions, a chiral zero mode has, as a part of its wave funétigh,which behaves,
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upon being trapped by a domain wall, like &xp2y2). As we shall see below, by adding
another compact dimension (the sixth one), the phases appear as the overlaps between wave
functions of fermions which are “trapped” at different locations along the 6th dimension.
What this really means will be explored in the next section.

3. Fermionsin 6 dimensions and pur e phase mass matrix

Notwithstanding the string theory argument, there might be another simpler motivation
for the need of more than one extra spatial dimension: if the fundamental Clanck”
scale were of0(TeV) to “solve” the hierarchy problem, and if theextra dimensions
were to be compactified with the same radRighenrn > 2 in order forR to be in the
submillimeter region as required by the lack of deviation from the ordinary inverse square
law down to about 0.2 mm [7]. In our case, the above need is dictated by the desire to
build a more “realistic” mass matrix: the so-called pure phase mass matrix or its almost-
pure-phase counterpart. (In this construction, we are not concerned about whether or not
the ultimate theory contains more than six dimensions.) To this end, we first study the
behaviour of fermions in six dimensions, subject to similar boundary conditions as in the
5-dimensional case.

3.1. Fermionsin six dimensions

The task of this section is to study fermions in six dimensions, with the ultimate aim of
obtaining massless chiral fermions in four dimensions.

In order to discuss fermions in six dimensions, we first turn our attention to the
representation of gamma matrices for these fermions. Before we begin the discussion, a few
remarks concerning spinors 80(N) are necessary.

We shall be working with the grouO(5, 1) that, as we discuss in Appendix A,
has two irreducible spinor representations of dimension 4. We shallyputind v_
into a reducible “Dirac” spinory = (¥4, ¥_). The chiral representation of the gamma
matrices forSO(5, 1) is shown in Appendix A. The notation for the coordinates will
be similar to the five-dimensional case, with the sixth dimension denotegd hgmely,
xy = (xo, X1, X2, X3, ¥, ). The free Lagrangian fof is now written as

Ly =iy TNayy, (18)
whereN =0, 1,2, 3, y,z. The metric used in this paper is simply- +-++++). It is

useful to see explicitly the Lagrangian written in terms of the components &%or this
purpose, we give the explicit forms féf, and I as can be seen from Appendix A,

(9 —irs

n= (g g) (20)
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whereys is the usual matrix encountered in four dimensions &isda 4x 4 unit matrix.
In addition, we also needt = v Io = (¥_, —y). Eq. (18) can now be rewritten as

Ly =—iYiy" dury —ivy"0uv— + v 0,y + Yy 0,y
— i 0y F i 0. (21)
As we explain in Appendix A, the 4-dimensional kinetic terms (the first two terms of the
above equation) will acquire a plus sign whe'hare replaced by* which are appropriate
for the metric(— +++) which is a remnant of the original metrie- ++ +++). The
reader is strongly recommended to consult Appendix A concurrently with this section in
order to avoid confusion.

As in the case of the fifth dimension, we will assume that the sixth dimension is
compactified on an orbifold1/Z». v is assumed to have supp®t Lg] along the sixth
dimension. We first discuss thi& symmetry for free fermions.

From Eq. (18), one can see that the Lagrangian has the folloiirsymmetry:

w(x“,z)—>W(x“,z)zleﬂ(x“,Le—z). (22)
With I, given above, this symmetry translates into

Vi (x¥,z2) > Uy (x%, 2) =y (x*, Le — 2),

/. (x“, z) —> W (x“, z) =y (x“, Le— z). (23)

As with the five-dimensional case, our boundary condition is

Vi (x¥,2) = Wi (x*, Lo+ z) = ¥+ (x*, 2L + 2). (24)
Again, combining (23) with (24), one obtains

Y (x, —2) =¥ (x",2), (25)

Y+ (x¥, L — 2) = ¥¢(x*, Le + 2). (26)

We immediately recognizes= 0, Lg to be the fixed points of the orbifold. It is convenient
to rewritey1 as

Ve = %(X +n). (27)
In terms ofx andn, the boundary conditions become

x(x% —2) = x(x", 2), (28)

n(x%, —z) = —n(x%,z), (29)

x(x* Le—z) = x(x* Lo +z), (30)

n(x“,LG—z)z—n(x“,L6~|—z). (31)

From the above boundary conditions, one can see ithednishes at the fixed points
z=0, Lg.
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As usual, we shall write:

x (x4 2) = xm (x%)Ex.m (2), (32a)

v (x%,2) = (x¥) 9. (2). (32b)
Since thezero modesin the “4-brane” aréndependent of z, we have

x(x*2)g=kx(x%).  n(x*z)y=0. (33)

where k is a constant. Again, the free fermion wave function for the zero mode is
uniformly spread over the 6th dimension. We now investigate the effect of a coupling with
a background scalar field having a kink solution.

For the discussion which follows, it is convenient to notice that

—i Y Yy + i Y— = —i X3 — 7D X (34)

Eventually, we would like to find an equation for the surviving zero mgde®, 7)o in the
presence of a background scalar field which will be assumed to be real. For this purpose,
let us write the surviving zero modeas

x0(x%,z) = x (x*)éx.0(2). (35)

As we shall see, upon using Eqg. (34) and subsequent interaction terms, one can derive an
equation governing the behaviourgfo(z) alongz which will eventually tell us whether

or not one has a localized behaviour as in the five-dimensional case or an oscillatory
one (pure phase). This will depend on the type of fermion bilinears which couple to the
background scalar. Roughly speaking, if the coupling ends up to be of the form(z),

for example, ther§, o(z) will have an exponentially-suppressed form similar to the five-
dimensional case. If, however, it ends up looking likg/(z), then&, o(z) will have an
oscillatory behaviour. This is so because of the way Eqg. (34) looks.

We now look for the aforementioned fermion bilinears which are required to be
Hermitian (because the background scalar field is assumed to be real) and Lorentz
invariant.

Let us introduce a real scalar field which transforms urifieas

@(x“,z) — —<P(x°‘,L5—z). (36)

First, the most obvious, Hermitian and Lorentz-invariant bilinear is simply (remember-
ing that g is anti-Hermitian with our metric)

iv(x® 2)y(x* 2). (37)
Notice that (37), when expanded in termswoéindy, are of the formnx +- - -. This, when
combined with Eq. (34), would give an exponentially-suppressed form for the zero mode
if there exists such a Yukawa coupling. Can it coupl@t® If the reflectionZ, symmetry
were the only symmetry around, it is straightforward to see that a coupling of the form
iU (x®, 2)¥(x%, 2)@(x%, z) is an invariant. This, as we have mentioned above, would not
be what we are looking for, namely, an oscillatory wave function. A mere mimicking of the
five-dimensional case would not work. Below we propose a mechanism where the desired
behaviour could arise.
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Let us endow the scalar and fermion fields with an additional discrete symmetry which
will be called theQ-symmetry and which works as follows. Let us divide the space inside
the brane of thickneskg into two regions: 0 td.g/2 (region 1) andLg/2 to Lg (region Il).

Let us define the following transformations. Undgy

D (x%, z) > —D(x*, 2). (38)

Notice that (38) is not to be confused with (36) which is a reflection symmetry. We then
notice the following fact: itz is inside region | therLg — z will be inside region Il and vice
versa. For the fermion, we will impose the followim@rtransformationsy —  for z in
region | andy» — —v for z in region Il.

With the aboveD-symmetry, one notices that a coupling of the faptx®, z)¥ (x%, z) x
@ (x%, 7) is forbidden for any point inside the brane. However, a non-local interaction of
the form ¢ (x%, )y (x%, Lg — 2)®(x%, z) is allowed by theQ-symmetry. In particular,
aHermitian bilinear containingy (x%, z)¥ (x%, Ls — z) of the formyr (x%, 2)y (x%, Le —

7) — ¥ (x%, Le — 2)¥ (x%, ) is allowed by this symmetry.

The way theQ-symmetry works seems to imply that the orbifold we used for the
compactification should b&;/Z> x Z; instead of aS1/Z>. The behaviour of the fields
under the newZ;, symmetry is, in fact, very similar to its behaviour under the initial one.
To see this let us defing = z — Lg/2 and:

&(x“,z’)=1ﬁ(x“,L6/2+z’)=1ﬂ(x“,z). (39)
Again, from Eq. (18), we can see that the Lagrangian is invariant undeftsgmmetry:

P2 = B 2) = NI (. Lo~ ). (40)
We will impose the same boundary condition asZor

1/7(x“, z’) = 117()60‘, Le+ z’). (41)
Combining Egs. (40) and (41) we get:

P (x*, =) =P (x". 7).

&i (xa, Lg — Z/) = IZ; (Xa, Lg+ Z/) (42)
which, in terms ofy» andz, become:

Ve (x%, 2) = Y (x%, Le — 2),

Y (x¥, —2) = Y5 (x%, Le +2). (43)

Using this second parity we can find an explicit realization of thesymmetry as
follows. First, we shall define the behaviour of the fermions under this symmetry in the
region | as,

V()= 0¥ () =TI7Y(2) (44)

now, Eq. (43) relates region | one and region Il of the orbifold—as it should be since the
physical space in 81/Z> x Z,, goes from 0 taL /2—so0 in order forQ to be a symmetry
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of the Lagrangian the fermions have to satisfy,

OV (Le —2) =V (Le —2) =Y (2) = Iy (2) = —I'7¢(Le — 2), (45)
where in the second and last equalities we have used Eq. (43) which can also be written as
Y(x*, 2)=1I¢9(x% Le —2).
Notice that this realization of th@-symmetry is only possible in an even number
of space—time dimensions since it is only in this case that there exists a matrix which
anticommutes with all of the gamma matrices of the algebra and which does not belong to

the algebra.
With the above definitions, it is straightforward to see that the Yukawa coupling
£y =S (P06 Lo =)~ F (" Lo- 2w (D))o (% 2). (46)

is invariant under allZ, Z; and Q symmetries wher@® (x“, z) = @ (x%, z). Further-
more, the action of the three parities forbids the presence of another non-local Hermitian
term, i (W (2)¥ (Le — z) + ¥ (Le — 2)¥(2))®(x%, 2). In fact, Eq. (43) renders the above
term to be identical to zero.

In terms ofyx andn. Eq. (46) becomes

Ly1= g{()"((x“, 2)n(x*, Le —z) — x (x*, Le — z)n(x*, Z))
- (f;(x“, 2)x(x* Le —z) — n(x*, Le — z) x (x*, z))}@(x"‘, 2). (47)

As before, the minimum energy solution féris
(@) =h(2). (48)

From (34) and (47), the equation of motion for the surviving zero mgagz) has the
form:

—3:6x,0(2) +ifh(2)éx 0(Le —2) =0. (49)
In order to solve Eq. (49), we shall use Eq. (43) that, in terms ahdy leads to,
£x.0(Le —2) =&x.0(2). (50)

Because of the factarin Eq. (49)&, 0(z) will not be localized along.
The solution to (49) with the ansatz (50) is now given by

1 .
£x.0(2) = ﬁe”(“, (51)
where
Z
s()=f f dz h(z). (52)
0

Making the SHO approximation as used in the five-dimensional case (a) statement to be
justified below, the properly normalized wave function §9ro(z) would be
2,2

1 .
SX,O(Z) = \/—L_6€lu <, (53)
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From the above solution for the zero mode in the 6th dimension, Egs. (51), (53), we
notice a marked difference with the 5-dimensional case: the zero mode wave function
is now oscillating inside the thick brane, along the sixth dimension, while in the five-
dimensional case, its counterpart has a localized form along the fifth dimension.

Let us assume there is a kink solution fbri.e.,

h(z) =vtanhuz), (54)

wheren = (1/2)1/2v. With this solution (54) put into (52), the explicit expression for the
non-vanishing zero mode is now

1 gifvin(costinz)/u (55)

~/Lg
Just as we have done with the five-dimensional case, one could generalize the above
discussion to include a “mass term” so thfdt(z) — fh(z) — m. As a result, one now has

£x.00@) =

_ 1 iroincostua /u—ms) 56
= e .
5)(,0(1) «/L_G ( )
This more general expression (56) in fact determines the phase of the oscillation.

In the construction of the mass matrices in four dimensions, we will need overlaps of
wave functions in the extra dimensions, as we have discussed above in regards with the
fifth dimension. How the mass matrices look like in six dimensions is the topic which will
be discussed next.

We end this section by presenting another type of Yukawa coupling which is used
to actually localize fermions along the fifth dimension. The only difference with the
previous section is that we now write it using the full six dimensions. Withdefined
in Appendix A, the appropriate coupling is

SYuk2=/d6x FUIrdy. (57)

Defining y5 = iI',I7, one can see that Eq. (57) is invariant undefx”,y,z) —
+psy(x*, Ls — y,z) and &'(x*,y,z) > —®'(x*,Ls — y,z) which finally gives
Yi(x,—y,2) = £ys¥(x,y,2) and @'(x, —y,z) = —P'(x,y,z). Also Eq. (57) is
invariant under th@-symmetry provided tha® &' (x*, y, z) = —®’(x*, y, z). Notice that
Eqg. (57) can also be written as

Svuie = f 5% 1 (7®'x — i'n). (58)

Eq. (58) will reduce to the usual coupling in five dimensions. One last comments in
order. Eq. (57) is also invariant under a simultane@ystransformation:y (x¢, z) —
Iy Le—1z), P (x,y,2) > @' (x,y, Le — z), as well as under thg@-symmetry.

Before leaving this section, we would like to make a remark concerning Eq. (43).
Basically, it is a “mapping” of region | into region Il and vice versa, namelg®, z) =
y(x% Le —z) or y(x*, Le — z) = ;¥ (x%, z). Now, let us remember that Eq. (43)
is a consequence of our boundary conditions. When we substitute it into Eq. (46) so
that one deals with the physical space which is now ranging fromxf@, it acquires
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a Lorentz non-invariant formy (x%, z) I v (x%, z). What this says is that our boundary
conditions break the six-dimensional Lorentz invariance down to a five-dimensional
Lorentz invariance. Our original Lagrangian (46)Lierentz invariant under the full six-
dimensional Lorentz group and only when one goes to the physical space dictated by the
boundary conditions, the six-dimensional Lorentz invariance is broken down to the five-
dimensional one.

3.2. (Almost) pure phase mass matrices

We shall use the same notations as in Section 2.2. The action for the Yukawa interaction,
in six dimensions, between the quarks and the SM Higgs field, is written as (the down
sector is treated in exactly the same manner)

Svukawa= / dxky Y Q] CeH Y US+h.c, (59)
i j

whereCg = I'pI>1,. We have, for the moment, omitted to write down other possible terms
which are needed to determine the phases along the sixth dimension. This will be dealt
with in the next section. We first begin with a “phenomenological” analysis.

The previous analysis led us to write a generic (zero-mode) fermion field as

Y(x,y,2) =¥ (x)&5(y)86(2). (60)

Before making use of Eq. (59) to construct the mass matrix, let us describe a possible
“geography” of the fermions along the extra dimensions. The discussion of Section 2.2
pointed out the following features: the localization, along the fifth dimensgjarsf Q; at

one place and/{ at another place produces a democratic mass matrix as shown in Eq. (16).
That is the “geography” along the fifth dimension that we would like to keep. Basically,
left- and right-handed fields are localized by two domain walls at different locations. Why
this should be so is beyond the scope of this paper. However, one important point that
should be kept in mind is the fact that, in our model, there are only two locations (left and
right) along the fifth dimension, regardless of the family index, for each quark sector (up
or down). As mentioned above, this gives rise to the universal effective Yukawa couplings
gv.u. andgy 4 which determine the overall mass strength for each sector. Let us recall that
gyv.u andgy 4 are proportional to the overlap between left and right for the up and down
sectors, respectively. Again, what splitg, from gy 4 is beyond the scope of this paper.
However, we will make some remarks concerning this issue at the end of the paper.

The next question concerns the locations of various domain walls along the sixth
dimension. At the end of this section, we will present a simple example which shows
how one can localize these domain walls. For the moment, we will simply parametrize
these locations as shown in Eq. (56). We will assume that the domain walls which “fix”
the phases for the three families are located at different positions aldiay the purpose
of illustration, we will stay with this simple picture of family breaking in this manuscript.

A more general case with phenomenological applications will be dealt with elsewhere.
This will involve different profiles for different family kinks, etc.

We shall discuss below the implications of the cases when, for each faphdpd U

are “in phase” and when they are slightly “out of phase”. But, first, let us use Eq. (60) and
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Eqg. (59) to construct a general generic mass matrix for the up sector. The mass matrix for
the down sector will be obtained in exactly the same manner.

In the following, the quantity.g which appears in various formulas is a generic symbol
for the length of the physical space, whichlig itself for the orbifoldS1/Z2 or Lg/2 for
the orbifoldS1/(Z2 x Z5).

To begin, we will assume the following situation for the “geography” of family domain
walls along the sixth dimensian We will then discuss special cases of such a scenario. (As
we have briefly mentioned above, this scenario is presented for the purpose of illustration
and is not the most general case.) Let us define the following quantities which appear in
Eq. (56):

fui/mi =a;, M Q.ue =Mz, (61)
wherei = 1, 2,3 denotes the family index and wherg = (A/Z)l/zvi. Notice that, in
principle, the quartic coupling can depend on the family index This more general
case, however, will be investigated elsewhere. From Egs. (59), (60), one can write an
effective Yukawa interaction in four dimensions and construct a mass matrix as we had
done earlier. This construction is identical to the five-dimensional case, except that now
the matrix elements will contain an extra factor which is the overlagg@f’s. As usual,
the mass matrix will be similar to Eq. (16) except that now, instead of the matrix elements
being unity, one has

, (011 @12 a3

M=gyu 7 (azl azz azs) , (62)
2\as1 azg ass

where

ajj = / dz &g i &6.j-

1

Lg
= L—G/dz exp(i(mjy —m;_)z)
0

= (exp(i(mH —mj_)LG) —1)/i(mj+ —mj_)Leg, (63a)

aij = / dzég ;86

Leg
= Liﬁ / dz exp(i (aj In(COSI‘(,ujz)) —aj In(COSf(,uiz)) + (mjy — mj,)z)>.
0 (63b)
Notice thatLg here is a generic symbol for the length of the physical space as we have
mentioned above.

The above equations (62), (63a), (63b) refer to the case where domain walls, which
“determine” the phases of the fermions, are “located” at different places. We will specialize
below to a few interesting possibilities. However, some important remarks can already
be made. We ask the following question: under what conditions will the mass matrix be
Hermitian or non-Hermitian?
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3.2.1. Hermitian and non-Hermitian mass matrices

We now present two different scenarios.

(a) The parametens;+ which determine the “locations” of the domain walls possess
interesting features. The first observation one can make is as follows. If the domain walls
which “localize” the phases @@ andU* (left and right), foreach family, are located at the
same place along i.e.,

Mig =mi— (64)
one obtains the following results

aji = af; (65b)

The mass matrixM is Hermitian! The hermiticity of the mass matrix is@nseguence
of the “collapse” of left and right (oQ andU¢), for each family, into the “same position”
along the sixth dimension. Two remarks can be made concerning a Hermitian matrix. First,
its determinant igeal. This means that atdetM) = 0. The possible connection of this
statement with the strong CP problem (see, e.g., a review by [8]) will be explored further
at the end of the paper.

Let us first see if the Hermitian matrix above is of a pure phase form.

The discussion which follows will deal with issues which are also relevant to the non-
Hermitian case.

Let us look at

Lg
ajj = Lie /dz exp(i (ajIn(coshu;z)) — a; In(coshuiz)) + (m; — mj)z)>. (66)
0

Under what conditions would;;'s look like pure phases, namely, of the foeti, or an
almost pure phase of the for¢h — p)e’? with p <« 1? To answer this question, let us make

a little detour to the meaning of wave function overlaps, thickness of domain walls and size
of the extra dimensions.

We have seen how one can localize fermions along the fifth dimeng)dmy(having
domain walls of sizes /lu « Ls. The effective strengths of various interactions are
determined by the overlaps of the wave functions alpnBor this reason, it is preferable
to have the thickness of the domain walls small enough, i/g.,<& Ls, so one can “fit”
several fermions along in such a way as to obtain desirable effects such as “slow” (or
no) proton decay, possible mass hierarchies between different fermion sectors (quarks,
leptons), etc. As we move on to the sixth dimension, it is not obvious that such a picture
is still necessary. In fact, at least as far as the pure phase mass matrix is concerned, the
thickness of these domain walls can be as large as the size of the compactified dimension
itself, as we shall see below.

Let us, for the time being, assume that all domain wall thicknesses (a)ang of the
size of the compact dimension, i.e/ul ~ O(Lg). In this situation, one can use the SHO
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approximation and carry out the integration of Eq. (66), namely,

Lg
aij = Liﬁ f dz exp(—i (Au2 2 — Amijz)). (67)
0
where
Apfy = (1/2)(ainf —ajuf), (68a)
Amij =m; —mj. (68b)

The integration can be explicitly carried out. One obtains

i(ZAuffLFAmij)

erf(CRU S M | erf(LAML

u N ( 2,/iduf ) (zviA“ff) exp(i (Amij)z)
1] — "o 2 .

2 iAMl.Zj Lg A

(69)

In a phenomenological application of Eq. (69), one can use it without making any
approximation. However, in order to see if it has a more familiar pure phase form or not,
we will make an expansion of (69).

Let us define

A/,Ll-zj Le = x;j, (70)
Am;j Le = yij. (71)
Forx;;, yij <1, one can expand (69) giving
2
aijz{1—435xi4j—%yizj—i-lizxizjyij}exp{i(%—%)}, (72)
where we have neglected terms@«tx?j, y4 orless in the modulus and terms@fxg., 4
in the phase. Notice that farj;, one has:, = —xZ andy;; = — y;;, and hence; = a;

as they should. In this form one can see that tllile Hermitian mass ma#ixast of the

pure phase form. This would have been the case if one could neglect terms contgining
andy;; inside the coefficient multiplying the exponential. However, we will not neglect
those terms, leaving the possibility of a small deviation [9] from a pure phase mass matrix.

Notice that when the domain walls are all located at the same pointpig;; = 0,
and when they have the same thickness{o& 1), Vi, j, one recovers the DMM form,
namely,a;; = 1, as one can see from Egs. (66), (67), (72). In addition, we notice that one
can also obtain the almost-pure phase Hermitian mass matrix when itigr# 0 or
A,ul.z. # 0, but not necessarily both, as can easily be seen.

(b) As we have seen above, within the framework of Egs. (63a), (63b), the mass matrix
can be purely Hermitian provided the conditien, = m;_ is fulfilled. What would
happen ifm; # m;_? To study this question, let us refer back to Egs. (63a), (63b), (72)
and let

miy —m;— =¢€j. (73)
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Also for convenience, let us define
51’ = EiLG. (74)

With the above definitions, the diagonal matrix elements which are no longer unity, can be
written as
. sin(s; /2)
i =expid;/2) ——. 75

aii Piéi/2) 5:/2) (75)
The off-diagonal elements are similar to Eq. (72), except that now one has the following
replacement;; — y;4 j— = (m;+ —m;_)Le. Itis convenient to remove the phases from
the diagonal elements by absorbing the phasesintp, namely£e i+ = expisi /2) & ;. -
From the definitions of;; anda;;, one now has '

sin(s; /2)
= Sini/2). 76
Y= Gi2) (76)
2.4 1, 1, 1 1, 1,
“= {1 45" T aYim i T g T gt i

2

x exp{ (ylzj — %)} (77)

where
Yi—,j— = (mi— —m;j_)Le. (78)
Notice thaty,_ ;_ = —y;—;—. In Eq. (77), we have made use of the above phase

redefinition and of (73), (74). The mass matrix described by the above elemeamts is
Hermitian for the following reason. The modulusa:;t will have a term—-5y;_;_8; —
3107 + 15x58) = 5yi- j-8; — 3307 — . It can easily be seen thét;;| # |aji|
unIessS = —8 which cannot be satlsf|ed f/or all Despite the fact that the phaseaf

is the negat|ve of that af;;, the difference in moduli implies that, in genera}; # ai*j’
and hence thaon-hermiticity of the matrix. It can be approximately Hermitian if one can
neglect the terms containidgin (77).

Notice that, even for the special case where all “left-handed” family domain walls are
“located” at one point along, i.e.,m;_ =m;_ =m_, so thaty;_ ;_ =0, and all “right-
handed” family domain walls at another place, ise = §, the non-hermiticity still appears
in the difference in moduli betweery; anda;; because of the presencedof

From the above discussion, one can see that one recovers the Hermitian matrix in the
limit §; — 0.

In summary, we have shown that, in general, the deviation from hermiticity in our
framework comes from the splitting between “left” and “right”, namely,. # m;_.

The above analysis can be carried over to the down sector in exactly the same manner.
There are, however, two interesting remarks that can be made. First, although the mass
matrix for the down sector is now characterized by a universal strepgihwhich is in
general different frongy ,,, the matrix itself can be identical to the one for the up sector if
we consider scenario (a). The reason is that scenario (a) is one in which the domain walls
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for 0 and D¢, for each family, are “located” at the same place along the sixth dimension,
which is exactly the same as for the up sector. Therefore, the matrix elements (without the
universal strength) atbe same. In consequence, the diagonalization matricestasame,

i.e., Vy = Vp. Hence,Vckm = VJ Vp =1, a mere unit matrix. In other words, the mass
matrices for the up and down sectors cannobbin Hermitian. To obtain a non-trivial
CKM matrix, at least one of the two matrices has to be non-Hermitian in this particular
scenario.

The above (almost) pure phase mass matrix as obtained from six dimensions is what we
have set out to derive. From it, we have learned a few things.

(a) In general, the almost pure phase form of the mass matrix can be easily seen if
the thickness of various domain walls along the sixth dimension is of the order of the
compactified sixth dimension. (There is no reason why, in principle, the thickness of the
domain walls should be much smaller than the compactified dimension, in contrast with
the five-dimensional case.)

(b) When the domain walls “fixing” the phases for and U°¢, for each family, are
located at the same placey(;+ = m, ;—), the mass matrix is purely Hermitian. As we
have seen above, another possibility is when the domain walls “fixing” the phasés for
are at one location and those which are responsible for “fixing” the phasé$ afe at
another location, in which case the mass matrix is also Hermitian. If one considers these
cases to be a “tree-level” situation (a) statement to be further clarified below, the fact that
argdetM) = 0 makes this scenario an interesting “candidate” for a solution to the strong
CP problem.

(c) The mass matrix becomesn-Hermitian whenm,, ;+ # m, ;—. We will briefly
discuss below the possibility that, ;+ # m, ;— is due to “radiative corrections” of the
casemy i+ =my ;.

The mass matrix for the down sector is obtained in a similar way. The main difference
between the two sectors is the “universal” strength which appears in front of the matrix:
8Y.u % for the up sector angy,d“—d2 for the down sector. The other difference in the case

of a non-Hermitian matrix (scenario (b)) is the splitting between “left” and “right” for each
family, which does not have to be the same for the two sectors.

Notice that, in order to be more general, we allow the possibility of two different mass
scalesw, anduvy. If there were onlyone SM Higgs field therv, = v; = v. In this case,
the disparity between the mass scales of the up and down sectors would come from the
difference betweepy , andgy 4, which, in turns, could come from the differences between
wave function overlaps, along the fifth dimension, of the two sectors (modulo differences
in the fundamental Yukawa couplings). To keep our discussions as general as possible, we
also allow for the possibility that two SM Higgs fields exist.

Itis beyond the scope of this paper to discuss in detail the phenomenology of our model.
It will be carried out elsewhere.

3.2.2. Some remarks on localization of family domain walls along the sixth dimension

In this section, we will briefly discuss one way to localize the various domain walls
responsible for “fixing” the phases of fermions along the sixth dimension. There are
probably several mechanisms to achieve this. We will present one of such mechanisms,
from the point of view of effective field theory.
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For simplicity, we shall assume in this section that= a = f//A/2. This simple
assumption basically refers to couplings between fermions and background scalar fields
which are invariant under the family symmetry.

First, let us list the parameters that we need to construct an almost pure phase mass
matrix. From Section 3.2.1, we learned that we needwith i = 1, 2, 3 which control
the thicknesses of the domain walls angd: which control the locations of the domain
walls. We also learned that, one can obtain a Hermitian mass matrixamhes m;_ and
a non-Hermitian matrix whem;  # m;_. It turns out to be a highly non-trivial task to find
a mechanism which can “explain” the origin of these parameters. In some sense, it might
even be overly ambitious to make such a claim. We will, however, make an attempt to, at
least, hint at one possible scenario.

In Section 3.2.1, we were basically doing the “geography” of family domain walls along
the sixth dimension. To construct a scenario for the “geographical points” (the var®yls
let us recall that the family symmetry of our modemg ® Sgc. The background scalar
fields which couple taQ or U¢ will appear in terms such a@® Q, Uc®U*. We will,
therefore, need two of such background fields in order to write down invariant Yukawa
couplings:®@o and @y.. These background field®o and @y«, will be represented by
3 x 3 matrices. Some of the details concerning the potential for these scalars are given in
Appendix B. Here, we will just quote the results. The discussion below refers to the up
sector. As we have seen earlier, the down sector can be treated in exactly the same manner.

We will concentrate on scenario (a) of Section 3.2.1 for the purpose of illustration. We
will assume the following Yukawa interactions:

Ly =f0®0Q+ fUPycU° +h.c, (79)

where, for simplicity, we have put the two Yukawa couplings to be equal. (A more general
case can be accommodated straightforwardly.) The minimization of the potential gives, at
treelevel,

h1(z) 0 0
(Do) = ( 0 ho2) 0 ) (80)
0 0 3@

One could assume that, at some deeper level and because of the family symmetry, the two
background fields behave in exactly the same manner, i.e., having similar parameters, and,
in consequence, one has

hiz) O 0
(‘1>U<>>=( 0 haz) O ) (81)
0 0 h3(2)

These VEVs will be shifted by radiative corrections. It is beyond the scope of this paper to
examine this problem and we will simply parametrize these shifts by

hi(z) = hi(z) + 8h;, (82)

where the shifts are assumed to be independentarid are also assumed to be much
smaller thary; (or ;).
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Combining Eq. (82) with Eq. (79), one can make the following identification
mi—=mjy = fSh;. (83)

This is the case when one would obtain a Hermitian mass matrix of scenario (a) of
Section 3.2.1! It goes without saying that there are two assumptions which have been
made. First, we have assumed the equality of the Yukawa couplings in Eq. (79). Second, we
have assumed that the behaviour of the two background scalar fields are identical. These
assumptions might come from some deeper symmetry bet@esmmd U< (or D€). This is
very similar to the notion of left-right symmetry that one encounters in four-dimensional
model building. In consequence, the hermiticity of the mass matrix that we obtained by
“phenomenologically” puttingn;— = m;, might be justified by some form of left—right
symmetry.

In addition (82), one should also take into account vertex corrections which will be
different for 0 and U¢ (they have different gauge interactions, for example). Let us
parametrize those shifts by

fo=r+3fo. (84a)
fu=f+8fue. (84b)
where the notations are self-explanatory. We will assume dfiglyc <« f. Naturally,
fo# fu.
From the above equations, one can make the following identifications:
mi_ = fobh, (853)
miy = fush. (85b)

Since one expectéfy # §fye and, in consequencng # fy, one would expect, in
generalm; 1 # m;_ which is a condition for the appearance of a non-Hermitian matrix.
However, an approximate Hermitian matrix could arise if the radiative corrections and, in
particular, the difference in the radiative corrections are small. One can see that, as we turn
off whatever interactions (gauge, etc.) which contribute to the vertex correétigns,

one recovers the Hermitian case, namaly, = m; .

Pursuing the same idea, one can also assumé&ifiathave a similar coupling of the
form f D¢®pc D¢. Assuming that® pe) has a similar form to Egs. (80), (81), one can now
see that, in the absence of vertex corrections, one obtgins= m; , + = m; 4.+, which is
just scenario (a) discussed above. SilkeandU¢ have different quantum numbers, one
expects that their vertex corrections will be different from each other. In consequence, one
will obtain mass matrices of the form (62) with coefficients of the form (63a), (63b).

Inthe scenario just outlined above, one can make interesting connections with the strong
CP problem. In the absence of vertex corrections, the mass malttexisitian and hence
argdetM) = 0, a possible solution to the strong CP [8] problem? (One could assume CP to
be a symmetry of the Lagrangian so thatp = 0.) As mentioned above, this hermiticity
might come from some left-right symmetr@ (<> U¢, D) which givesm;_ = m;, at
“tree level”. It could be quite provocative to see if there are connections, if any, with
previous solutions to the strong CP problem which made use of the quintessential left—
right symmetry [13].
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Turning on the vertex corrections, the pure phase mass matrix becomes non-Hermitian
and, as a consequence, one would obtain a non-zero contribution to the strong CP
paramete#. If this were truly a plausible scenario for the strong CP problem, the resultant
6 should obey the upper bound-sf10~2. However, it is beyond the scope of this paper to
analyze its magnitude. We will come back to this issue in a subsequent paper. Our future
studies will focus on the following two questions. Will the “radiative corrections” be small
enough so as to account for both the phenomenological constraints on the mass matrices
and the magnitude ob? If those phenomenological constraints on the mass matrices
require a “large” radiative correction, is there a “natural” mechanism to rdakmall
enough?

4, Conclusion

In this paper, we have studied the problem of fermion mass hierarchy from the point of
view of large extra dimensions. To this end, we have added two extra compact spatial
dimensions. In particular, we have shown how one can construct a particular kind of
mass matrices which is very successful in fitting the pattern of quark masses and mixing
angles: the pure phase mass matrix. This matrix is characterized by a universal Yukawa
strength appearing in front of a matrix whose elements are of the foriiéexp In our
construction, the universal Yukawa strength arises from the overlap of the wave functions
of the left-handed quarks (denoted &y and the right-handed quarks (denoted.lfyand
D¢) along the fifth spatial dimensiony). Along y, all left-handed families are localized
at one place and all right-handed families at another place, with the localization carried
out by domain walls whose thicknesses are assumed to be much smaller than the radius of
compactification ofy. We then proceed to show that the almost pure phase mass matrix
arise from the overlap of wave functions between different families and also between
left-handed and right-handed quarks, along the sixth dimensidsong z, the “phase
determination” is carried out by domain walls whose thicknesses are assumed to be of the
size of the radius of compactification of

We would like to stress again that the results obtained in this paper depend purely on
the “geography” of the domain walls along the extra dimensions.

The almost-pure phase mass matrices obtained in six dimensions have some interesting
properties, according to the “locations” of the family domain walls, which fix the phases,
along the sixth dimension. In one case (scenario (a)) which is dubbed “tree level” in this
paper, the domain walls fo@ andU¢ or D¢ are “located” at the same place along the
sixth dimensiory, for each family. The mass matrices thus obtained are ptieigitian.

In addition, apart from a different universal Yukawa strength, the matrices of the up and
down sectors are identical, giving rise to a situation in which the CKM matrix is simply a
unit matrix. We then considered a scenario in which either the domain wall¥ar D¢,

or both, is split from that foQ. As we have shown in Section 3.2.1, this would imply that
the mass matrix of at least one of the two sectors is non-Hermitian, and the two matrices
will be different from each other, implying a non-trivial CKM matrix.

One should also keep in mind the possibility that the mass matrices of both sectors
are Hermitian but not identical. In this type of scenario, one would get a non-trivial
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CKM matrix as well as a correct spectrum. This possibility is mentioned at the end of
Section 3.2.1. In order to be able to build a model for the “locations” of various quarks
along the extra spatial dimensions, a full phenomenological analysis of various possibilities
should be carried out to serve as a guidance.

These two cases of Hermitian and non-Hermitian mass matrices might have important
connections to the strong CP problem as we have briefly discussed above. This interesting
issue will be further investigated in a future paper.

Finally, a number of interesting issues such as the Kaluza—Klein modes, the extension
to the lepton sector, and others will be dealt with in future publications.
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Appendix A

In this appendix we are going to present a brief review of the spinorial representations
of the orthogonal group (D), in higher dimensionsf > 4). We are going to follow
closely the treatment done by Weinberg in his book [14], with a slightly different notation.
Notice that the first paper on this subject was written by Mohapatra and Sakita [15].

The starting point is a set of matrices, which spawn the Clifford algebra, with the
anticommutation relation$y,,, v} = 28,,. In addition, our attention will be fixed on
spaces of even dimensionality (= 21n) and, subsequently, we will extend it to odd
dimension spaces.

Using the anticommutation relations of the matrices, we can define fermionic
harmonic oscillators af?+ = %(—ygi +iy2i+1) Withi =0,...,n— 1, that are independent
and, therefore, the set of basis vectors of the representation space ¢élam2nts which
can be written as:

S1 4852 Sn
|slsz...sn):al+ a,j -at™|0) (A.1)

being|0) a vacuum annihilated by all destruction operatgrdn this basis the matrices
take the form:

-1 0 -1 0 0 1
ai=<0 1>®-~-®<0 1)@(0 0>®H2><2®"'®HZ><2 (A.2)

the —1’s are due to the fact thaﬂ' anda}L anticommute. Finally thez matrices can be
easily obtained and they read as:

V2i =—03Q - ®03R010x2® - ®Iox2,
Y2i41=03Q - ®03R02 Q2,2 ® - - ® Iox2, (A.3)
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whereo;’'s are the Pauli matrices. Note that this representation does not give the usual
representation in four dimensions but we can relate both using the following unitary
transformation:

U=ﬁ(63+02)®“'®(03+62) (A4)

so the “usual” representation is

Y2i =02 R02®01QIox2® - ®I2x2,

V2i41=02Q® - ®02003@[2x2® - ® I2x2. (A.5)
Since,
V2iv2it1 =il2x2® - ®I2x2®02 @242 ® - - - @ 22 (A.6)

the product of the 2 y matrices is:

2n—1

1_[ Yi=i"02® - ® 02 =nYy2n. (A.7)

i=0
Wheren is a phase such thab, y2, is the identity. Note that we are labeling the gamma
matrix equivalent tgss with 2n instead 2 + 1. This difference comes from our choice for
the labeling starting from 0 instead of 1. This new matrix anticommutes with'sland
therefore it implies that all spinorial representationgXxg®n) are reducible.

Let us find now the spinorial representations of the orthogonal groups with odd
dimensionality,D = 2n + 1; this is much more simpler once we have the representation
for O(2n) since we just have to take this representation and adgithenatrix. In this
case the representation is irreducible because we cannot find any independent matrix that
anticommutes with all the gamma matrices.

The transition of theO (D) representations t@ (D — 1, 1) representations is done
through a wick rotation.

To finalize we will explicitly write the gamma matrices for(5, 1).

o Six dimensions (with metri¢— + ++ -+ +)):

O4x4 —Vo)

Io=io2®01Q1L =
0=1i02Q®01Q®I2x2 (yo Otns

[0) —
F1=62®02®01=( x4 yl),
1 Oaxq
O4x4 —J/z)

=0y ® 020y =
2=02Q 02802 (yz Ouna

0 _
F3=62®02®03=< N V3>,
3 Oaxq
O4xa —i)/5>

Fy=62®03®112x2=( ive  Oa
X
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0. I
I=01®hy2®Ioxo= (Hjxj Oixi)’
X X
I 0,
I =03®Ix2®Iox2 = <0ixi _ﬁ‘:‘:) . (A.8)
X X

Notice that, in the above equations! (x =0, 1, 2, 3) andys are simply definedhere
asyo =01 ®Iax2, i =i02®0;, y5 = 03 ® [2«2. These definitions just happen to coincide
with the 4-dimensional ones with a meti¢ — — —). This is simply a compact way of
writing the 6-dimensional™’s. There isno changein metric. To see how the 6-dimensional
metric (— + + + ++) reduces to a 4-dimensional mettie + + +) when the two extra
spatial dimensions are compactified, one rewritédn terms of the gamma matrices which
correspond to the metric- + ++), namely,7* = iy*. In this way, the kinetic terms will
be preceded with a plus sign when they are reexpressed in terfi$. df course,ys
remains unchanged.

Appendix B

In this article, we had been discussing models in which fermions are localized at one
place or another along the extra dimensions and inside fat branes with the same or different
widths and how these settings could affect the phenomenology of the 4D models. However,
we did not provide any model that explains these different settings; this will be addressed
in this appendix.

As an example, we are going to study the possibility that the background scalar field is a
composite of fields that transforms under a three-dimensional representation of the family
group; therefore, this background scalar fiédldakes the form:

$1(x)
P (x) = (¢z(x>> ® (pr()P2(x)ga(x)) ", (B.1)
$3(x)
where theg;’s are the “fundamental fields” from which the background scalar field is
composed.

The first of the models we are going to propose consistsgfhmtential, without cubic
terms, for 2 composite fields of the form (B.1),

V(®1, P2)

= m; Tr[@107] + m?g Tr[P205 ] + %(Tr[qblqs;] +h.c)
+ I T(@100)7] 4 22T (0207)7) + 22 T (@107 ) (020 )]
+ %’(Tr[dbltp;@@{] +h.c)

m% 2 m% 2
= P12+ 22| + m3|®1]|P2| co o
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A1 Ao A3
+ 22 D17+ 221002 4 2201|022 cof
4 4 2
Ao o &
+ E|4>1| |D2]“ COS &, (B.2)

wherem? , are negative coefficients. We also made use of the following definitions,

@12 =Ti[ooT], (B.3)
+

cofa = Re(w) (B.4)
|@1]| D2

If 2m3 > — (A3 + Aacoa)|P1||P>| holds then the minimum of the potential occurs
when both fields take expectation values along orthogonal directions, that is, when
Tr[q§1q>§“] =0. In consequence, if we suppose that the expectation valud@fprand

|@,| areu andv, respectively, the potential we have to minimize is:

2

2
m m A
V(u,v) = —2u? + —202 4 2yt

A2

B.5
2TV Tty (B:5)
and its minimum is located at:
(B.6)
therefore we can suppose that,
u 0 0
(P1) = <0 0 0) , (B.7)
0 0O
0 0O
(P2) = <0 v 0) . (B.8)
0 0O

This means that this model will localize the components of the family multiplet at different
positions along the sixth dimension, namelyy@ndv.

We can extend this model to localize all the components of the family multiplet inside
the orbifold, with the background scalar field in (46) having all three eigenvalues different
from zero. This can be done if we add another background field that can be a singlet, or a
composite like the ones used. In the former case the three components will be shifted by
the same amount, ending in positions + u, s + v ands; in the later case the fermions
will be located at, v andz (the expectation value for the third field).
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