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Abstract

A FORTRAN implementation of hydrogen-like discrete–discrete atomic form factors is presented. The definition of atomic
form factors and their applicability to the calculation of atomic cross sections is briefly discussed. An explicit analytical
expression for the discrete–discrete atomic form factors is presented exactly in the way they are implemented in the program.
Finally, a description of the program itself and how to use it is given, together with some useful examples and their outputs.
 2002 Elsevier Science B.V. All rights reserved.
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PROGRAM SUMMARY

Title of program: DIFOFA

Catalog identifier: ADQY

Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADQY

Program obtainable from:CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland; http://www.usc.es/gaes/difofa.html

Operating systems under which the program has been tested:The
program has been successfully tested in a SUN workstation running
on Solaris 2.6 and with several distributions of Linux (RedHat, De-
bian) running on different kernels (2.2.19, 2.4.7–10, etc.)

Programming language used:FORTRAN 77

Memory required to execute with typical data:size of each of the
two test executable programs is approximately 120 kB

No. of processors used:1

Has the code been vectorized or parallelized?:no

No. of bytes in distributed program, including test data, etc.:6796

Distribution format: tar gzip file

Keywords: Atomic form factors, atomic scattering, cross sections

Nature of physical problem
The scattering of an electron or a proton by an hydrogen-like atom
or the collision of an hydrogen-like atom with a more complex atom

✩ This program can be downloaded from the CPC Program Library under catalogue identifier: http://cpc.cs.qub.ac.uk/summaries/ADQY
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are three body systems which can be solved perturbatively. The first
order solution corresponds to a one photon exchange interaction and
is known as the first Born approximation [1–3]. The response of the
hydrogen-like atom to a definite momentum of the exchanged pho-
ton is given by the Fourier transform of its charge density, known
as the atomic form factor. The hydrogen-like form factors have been
studied in the framework of hydrogen–electron collisions and the
recent experiments on exotic atoms [4,5] have updated the interest
on this topic requiring the knowledge of the form factors of highly
excited states.

Method of solution
We have considered an analytical expression of the hydrogen-like
atomic form factors [7] and we have implemented it in a FORTRAN
code optimizing the addition method and testing the final result.

Restrictions on the complexity of the problem
For a non-relativistic collision the Born approximation is safely
valid if the kinetic energy of the projectile in the laboratory frame
obeys [3]:

P 2

2M
� −E, (1)

whereE is the bound energy of the hydrogen-like atom initial state.
For the case of relativistic collisions it has been shown that multi-
photon exchange can lead to significant corrections in the hydrogen-
like atom collision [8]. However, the relativistic calculation also in-
volves the atomic form factors1 and for many small and mediumZ
atoms inn� 10 bound states the discrepancies are less than 10%.

LONG WRITE-UP

1. Introduction

The collision of a hydrogen-like atom with another system (a nucleus, atom, electron, etc.), can be solved in
terms of a Born expansion where the first term of the series is the leading one contributing to the differential cross
section. As an example, let’s consider the collision of an atom with a center of force field described by a potential
V (r). The cross section for the atom transition from an initial bound state,(n1, l1,m1), to a final bound state
(n2, l2,m2) can be expressed in terms of the atomic form factorsF

n2l2m2
n1l1m1

(q) [3]:
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whereṼ (q) is the Fourier transform of the center potentialV (r), β is the velocity of the atom andq the transferred
momentum in the collision. The coefficientsξ1 andξ2 are related to the masses of the particles of the hydrogen-like
atom byξ1 = m1/(m1 + m2) andξ2 = −m2/(m1 + m2). Finally,ψnlm is the wave function of the hydrogen-like
atom.

The total cross section is given by:

σ total
nlm = 1

2πβ2

∞∫
0

∣∣Ṽ (q)
∣∣2(1− Fnlm

nlm (q)
)
q dq. (4)

The atomic form factors given by Eq. (3) appear in the first Born approximation of any cross section calculation in
which an atom is involved. The original motivation for this work came from the need of the DIRAC collaboration [4,
5] at CERN [6] to have a computer implementation of generic hydrogen-like atomic form factors. DIRAC aims
to measure the lifetime of dimesonicπ+π− atoms, which are produced in the collision of the CERN PS proton
beam with a fixed target. After creation,π+π− atoms go across the target material before breaking up in two

1 The useful expressions for the multi-photon exchange cross sections as a function of the atomic form factors can be found in [8].
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charged pions or getting disintegrated in two neutral pions. To know from which atomic state the atom gets broken
(ionized) it is essential to compute the transition probabilities between two different atomic states, and this requires
obviously the computation of discrete–discrete atomic form factors. A detailed explanation ofπ+π−-physics in
DIRAC framework can be found in [9].

2. Analytical expression for the discrete form factors

For hydrogen-like atoms it is possible to perform the integral (3) and give an analytical general expression for
the atomic form factors [7]:

F
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where
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L= l1 + l2, l = L− 2s.

The coefficientsHk are given by:
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k̄ = nr1 + nr2 − k.

TheQ(µ,ν)
n of Eq. (9) are expressed in terms of the Jacobi polynomial as:
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n (b − a), (10)

which can be written as a series:
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Finally, theCk in (5) are the generalized Gegenbauer functions, defined by:
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Fig. 1. Choice of axis. As usualz is the quantization axis.

where anything with the subscripti means the productαi = (α + i − 1)(α + i − 2) · · ·α. Finally the dependence
onq is given by:

�= qn1n2

n1 + n2
, ω = 1

1+�2
, z = 1− 2ω.

The direction of the quantization axis depends on the choice ofYlm(θq,φq) in the expression forAs . If the
direction ofq is taken as the quantization axis we have:

Ylm(0, φ)= δm0

√
2l + 1

4π
. (13)

A more useful convention, nevertheless, would be to choose the quantization axis parallel to the collision direction.
This is particularly convenient when the initial momentum of the flying atom is much larger than the transferred
momentum in the collision. In this case the quantization axis remains almost unchanged in successive collisions.
Since the transferred momentum is almost perpendicular to this axis choice (q ≈ q⊥, andθq ≈ π/2), we write:
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2
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Some tables of atomic form factors have been published for the first choice of axis [3,10], and they are in good
agreement with the results obtained using the generic expression given by (5).

3. Description of the program

We provide a FORTRAN implementation of the discrete atomic form factors as given by Eq. (5), and the axis
choice of (14). This is done by means of a double precision function, DIFOFA, which should be called by the user
main program with the following arguments:

DIFOFA(n1, l1,m1, n2, l2,m2, q), (15)

• n1, l1 andm1 are integers representing the quantum numbers of the initial atomic state.
• n2, l2 andm2 are integers representing the quantum numbers of the final atomic state.
• q , is a double precision argument representing the momentum transferred in the collision inatomic units:
q(atomic units) = q/(µcα), whereα is the fine structure constant,µ is the reduced mass of the hydrogen-like
atom andµ=m1m2/(m1 +m2).
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Table 1

DOUBLE PRECISION FUNCTION DIFOFA( N1, L1, M1, N2, L2, M2, Q )

DIFOFA Returns the discrete--discrete atomic form factors

N1, L1, M1 Are integers representing the quantum numbers of
the initial atomic state.

N2, L2, M2 Are integers representing the quantum numbers of
the final atomic state.

Q Is a double precision argument representing the
momentum transferred in the atomic collision in
atomic units:

Q(atomic_units) = Q(MeV) / Mu(MeV) / alpha

where Mu(MeV) is the reduced mass of the
hydrogen-like atom and ’alpha’ is the fine
structure constant.

DIFOFA internally calls a number of functions. They are not intended to be directly called by the user, but they
could also be used by other programs in a straight forward way.

• DOUBLE PRECISION FUNCTION EUGAMM(N), is the Euler gamma function for an integer argument.
• DOUBLE PRECISION FUNCTION GEGENF(L,P,K,Z), are the generalized Gegenbauer functions given by

Eq. (12).
• DOUBLE PRECISION FUNCTION DJACPO(ALFA,BETA,N,X), are the Jacobi polynomials given by

Eq. (11).
• DOUBLE PRECISION FUNCTION DBINOM(X,K) are the binomial coefficients. The code is taken directly

from the CERN program library CERNLIB [11].
• DOUBLE PRECISION FUNCTION DCLEBG(A1,B1,C1,X1,Y1,Z1) are the Clebsch–Gordan coefficients.

The code is also taken directly fro the CERN program library CERNLIB [11].

The header of the source code looks as follows (see Table 1).

4. Test run input and output

The best way to illustrate the output of the program is to plot the value of the atomic form factors versus the
transferred momentum. As an example, we plot in Fig. 2 the form factors for 4 different transitions. The transferred
momentum is measured in atomic units.

From Eq. (3) we clearly see that:

F
n2l2m2
n1l1m1

(0)=
∫

ψ∗
n2l2m2

(r)ψn1l1m1(r)dr = δn1n2δl1l2δm1m2 (16)

therefore the discrete–discrete atomic form factors evaluated at zero transferred momentum should be either 0 or
1, as it can be verified in Fig. 2.
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Fig. 2. Plots of discrete–discrete atomic form factors for 4 different transitions versus the transferred momentum measured in atomic units.

To determine the range of atomic quantum numbers where our program gives reliable results we provide a test
program that computes the absolute difference|Fn,l,m

n,l,m (0)−1| for all the states up to those withn= 10. The results
are shown in Appendix A. However, we have performed this test for a wider range of quantum numbers paying
special attention to the least favorable case (l = 0, m = 0). It has been observed that ifn � 7 the program works
with a high level of precision. Forn = 12 the deviation from the correct value is of the order of 1%, and forn > 13
the results begin to be senseless. For any other case the program works with almost any reasonable value of the
quantum numbers. As an example, for the most favorable case (l = n − 1, m = 0), the value of|Fn,n−1,0

n,n−1,0 (0)− 1|
remains satisfactorily small up ton � 30.

Finally, we have prepared another main program which calculates the cross section of fast electrons by an
hydrogen atom for any state up ton = 11. The expression for this scattering cross section is given by [12]:

σnlm =
∞∫

0

8π
(
1− Fnlm

nlm (q)
)dq

q3
. (17)

The integration is performed with the CERNLIB routine DADAPT [11] after the change:

q → x

1− x
(18)

that allows transforms the semi-infinite interval(0,∞) into (0,1). The output is also shown in Appendix A.

Appendix A. Test results

A.1. Test result 1

We describe how to build and run the test program that computes the value of|Fn,l,m
n,l,m (0)− 1| for all the bound

states up ton= 10. We also show the final display output.
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Command line:

> make ffdiff
> ./ffdiff

Screen output:

** ******************************** **
** **
** This Output File gives us the **
** **
** absolute value of the result **
** **
** of subtracting 1. to the form **
** **
** form factor of a state at the **
** **
** origin. The expected result is **
** **
** 0. **
** ******************************** **

--------------------------------------
| N | L | M | | FFactor(0)-1.| |
--------------------------------------
| 1 | 0 | 0 | 0.00E+00 |
| 2 | 0 | 0 | 0.00E+00 |
| 2 | 1 | 0 | 0.22E-15 |
| 2 | 1 | 1 | 0.22E-15 |
| 3 | 0 | 0 | 0.10E-13 |
| 3 | 1 | 0 | 0.44E-15 |
| 3 | 1 | 1 | 0.44E-15 |
| 3 | 2 | 0 | 0.67E-15 |
| 3 | 2 | 1 | 0.67E-15 |
| 3 | 2 | 2 | 0.67E-15 |
| 4 | 0 | 0 | 0.74E-13 |
| 4 | 1 | 0 | 0.44E-15 |
| 4 | 1 | 1 | 0.44E-15 |
| 4 | 2 | 0 | 0.00E+00 |
| 4 | 2 | 1 | 0.00E+00 |
| 4 | 2 | 2 | 0.00E+00 |
| 4 | 3 | 0 | 0.33E-15 |
| 4 | 3 | 1 | 0.00E+00 |

. . .

| 10 | 8 | 5 | 0.87E-14 |
| 10 | 8 | 6 | 0.99E-14 |
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| 10 | 8 | 7 | 0.83E-14 |
| 10 | 8 | 8 | 0.12E-13 |
| 10 | 9 | 0 | 0.56E-14 |
| 10 | 9 | 1 | 0.56E-14 |
| 10 | 9 | 2 | 0.56E-14 |
| 10 | 9 | 3 | 0.36E-14 |
| 10 | 9 | 4 | 0.47E-14 |
| 10 | 9 | 5 | 0.47E-14 |
| 10 | 9 | 6 | 0.53E-14 |
| 10 | 9 | 7 | 0.36E-14 |
| 10 | 9 | 8 | 0.56E-14 |
| 10 | 9 | 9 | 0.56E-14 |
--------------------------------------

A.2. Test result 2

This is the way to build and run the test program that computes fast electrons versus hydrogen atoms scattering.
The program output is also shown.

Command line:

> make ffcsecc
> ./ffcsecc

Screen output:

** ******************************** **
** **
** This Output File gives us the **
** **
** result of the elastic cross **
** **
** section of fast electrons **
** **
** against hydrogen atoms **
** **
** scattering in the First Born **
** **
** approximation. **
** **
** Cross sections and Err. in **
** **
** square Bohr radius units **
** **
** a0**2= 0.280 10**-20 m**2 **
** **
** ******************************** **
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--------------------------------------
| N | L | M | Cross Secc.| Err. |
--------------------------------------
| 1 | 0 | 0 | 7.33 | 0.00 |
| 2 | 0 | 0 | 124.53 | 0.00 |
| 2 | 1 | 0 | 46.50 | 0.00 |
| 2 | 1 | 1 | 109.15 | 0.00 |
| 3 | 0 | 0 | 639.11 | 0.00 |
| 3 | 1 | 0 | 298.27 | 0.00 |
| 3 | 1 | 1 | 704.09 | 0.00 |
| 3 | 2 | 0 | 219.41 | 0.00 |
| 3 | 2 | 1 | 337.32 | 0.00 |
| 3 | 2 | 2 | 536.82 | 0.00 |
| 4 | 0 | 0 | 2029.93 | 0.00 |
| 4 | 1 | 0 | 1017.18 | 0.00 |
| 4 | 1 | 1 | 2404.81 | 0.00 |
| 4 | 2 | 0 | 884.08 | 0.00 |
| 4 | 2 | 1 | 1363.68 | 0.00 |
| 4 | 2 | 2 | 2174.17 | 0.00 |
| 4 | 3 | 0 | 678.12 | 0.00 |
| 4 | 3 | 1 | 866.82 | 0.00 |

. . .

| 10 | 8 | 5 | 49453.51 | 21.91 |
| 10 | 8 | 6 | 56553.16 | 29.91 |
| 10 | 8 | 7 | 64343.01 | 34.55 |
| 10 | 8 | 8 | 72794.42 | 7.86 |
| 10 | 9 | 0 | 24933.60 | 6.24 |
| 10 | 9 | 1 | 25834.98 | 6.33 |
| 10 | 9 | 2 | 28037.93 | 6.62 |
| 10 | 9 | 3 | 31237.44 | 7.17 |
| 10 | 9 | 4 | 35230.79 | 8.11 |
| 10 | 9 | 5 | 39879.30 | 9.74 |
| 10 | 9 | 6 | 45088.87 | 12.60 |
| 10 | 9 | 7 | 50798.16 | 17.71 |
| 10 | 9 | 8 | 56970.20 | 26.02 |
| 10 | 9 | 9 | 63586.26 | 35.89 |
--------------------------------------
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