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Abstract

An introduction to the theory of the renormalization group in the context of quantum field theories

of relevance to particle physics is presented in the form of 6 lectures delivered to the British Universities

Summer School in Theoretical Elementary Particle Physics (BUSSTEPP). Emphasis is placed on gaining

a physical understand of the running of the couplings and the Wilsonian version of the renormalization

group is related to conventional perturbative calculations with dimensional regularization and minimal

subtraction. An introduction is given to some of the remarkable renormalization group properties of

supersymmetric theories.

http://arxiv.org/abs/0909.0859v1


The purpose of these lectures is to introduce a powerful way to think about Quantum Field Theories

(QFTs). This conceptual framework is Wilson’s version of the Renormalization Group (RG). The only

pre-requisites are a basic understanding of QFTs along the lines of a standard introductory QFT course:

the Lagrangian formalism, propagator, Feynman rules, the path integral formulation, etc.

It turns out that supersymmetric theories are a wonderful arena for discussing RG because there

are many things that one can prove exactly. For this reason the last two lectures will provide a very

basic description of some of the extraordinary features that SUSY theories have in regard to the RG.

The discussion of SUSY will necessarily be very rudimentary.

I have not included any references in these notes. However, sources which I have found particularly

useful are:

(1) The idea of the renormalization group goes back quite a long way. In this course we have in

mind the version of the renormalization group due to Wilson and one can do no better than consult

the Physics Reports (Volume 12, Number 2, 1974) by Wilson and Kogut.

(2) Peskin and Schroeder’s textbook on QFT “Quantum Field Theory” is probably the most useful

and will fill in many of the gaps I have left. I also like Zinn-Justin’s huge “Quantum Field Theory and

Critical Phenomena”.

(3) Weinberg’s notes on “Critical Phenomena for Field Theorists” are very useful for explaining

how many of the ideas of the renormalization group came from statistical physics and are available in

scanned form at http://ccdb4fs.kek.jp/cgi-bin/img/allpdf?197610218.

(4) Manohar’s notes on “Effective Field Theories” hep-ph/9606222 have an excellent discussion of

the delicate issue of decoupling in momentum-dependent and -independent RG schemes.

(5) Strassler’s “An Unorthodox Introduction to Supersymmetric Gauge Theory” are not only un-

orthodox but excellent because they tackle many issues that are not covered in conventional SUSY

texts.

(6) I will not use superspace when discussing SUSY, but a standard source for this booking-keeping

device is the book “Supersymmetry and Supergravity” by Wess and Bagger.

(7) Our discussion of the beta function of SUSY gauge theories has been heavily influenced by 2

very insightful papers by Arkani-Hamed and Murayama, hep-th/9705189 and hep-th/9707133 which

clarify (at least for me) many of the confusing issues regarding renormalization in SUSY gauge theories.

Naturally, a series of only 6 lectures can only scratch the surface of this subject and I have had to

leave out lots of things and simply the discussion. Some additional information appears in the form of
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a set of notes at the end of each lecture.

I would like to thank the organizers of BUSSTEPP, Jonathan Evans in Cambridge 2008 and Ian

Jack in Liverpool 2009, for providing excellently run summer schools that enabled me to develop my

idea to teach QFT with the renormalization group as the central pillar.
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1 The Concept of the Renormalization Group

The key idea of the renormalization group results from comparing phenomena at different length/energy

scales. A QFT is defined by an action functional of the fields S[φ; gi] which depends a priori on an

infinite number of parameters: the coupling constants in a general sense so including mass parameters,

etc.. The set of couplings {gi} can be thought of as a set of coordinates on theory space. The functional

integral takes the form

Z =

∫

[dφ] eiS[φ;gi] (1.1)

and so, as well as the action, we have to define the measure
∫

[dφ]. This is a very tricky issue since

a classical field has an infinite number of degrees-of-freedom and it is by no means a trivial matter to

integrate over such an infinite set of variables. In perturbation theory a symptom of the difficulties in

defining the measure shows up as the divergences that occur in loop integrals. These UV divergences

occur when the momenta on internal lines become large so they are intimately bound up with the fact

that the field has an infinite number of degrees-of-freedom and can fluctuate on all energy scales. Of

course there may also be IR divergences, however these are not as conceptually serious as the UV ones:

in reality in a real experiment one is working in some finite region of spacetime and this provides a

natural IR cut-off.

At least initially, in order to make sense of
∫

[dφ], we have to implement some UV cut-off procedure

in order to properly define the measure, or equivalently, in perturbation theory regulate the infinities

that occur in loop diagrams. As we have said above, these UV, high energy divergences occur because

the fields can fluctuate at arbitrarily small distances and in order to regulate the theory we have to

somehow suppress these high energy modes. Whatever way this is done inevitably introduces a new

energy scale µ, the cut-off , into the theory.

Cut-offs or Regulators

There are many ways of introducing a cut-off, or regulator, into a QFT. For example,
one can define the theory on a spatial lattice (after Wick rotation to Euclidean
space). In this case µ−1 is the physical lattice spacing. Or one can suppress the
high momentum modes by modifying the action or the measure. Or in perturbation
theory one can analytically continue the spacetime dimension, a procedure known
as dimensional regularization.

Suppose we have some physical quantity F (gi; ℓ)µ which can depend in general on a (or possibly

several) length scale ℓ (or equivalently an energy scale 1/ℓ). The theory of RG postulates that one can

change the cut-off of the theory in such a way that the physics on energy scales < µ remains constant.

In order that this is possible the couplings must change with µ. This idea can be summed up in the
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RG equation:1

F (gi(µ); ℓ)µ = F (gi(µ
′); ℓ)µ′ . (1.2)

The functions gi(µ) with defines the RG flow of the theory in the space of couplings. The RG flow is

conventionally thought of as being towards the IR, i.e. decreasing µ, but we shall often think about it in

the other direction as well, towards the UV with µ increasing. In order that the RG equation (1.2) can

hold it is necessary that the space of couplings includes all possible couplings (necessarily an infinite

number). The RG is non-trivial because in order to lower the cut-off we somehow have to “integrate

out” the degrees-of-freedom of the theory that lie between energy scales µ and µ′. In general this is a

difficult step, however, as we shall see, in QFT we are in a very lucky situation due to the remarkable

focusing properties of RG flows.

The RG energy scale µ plays a central rôle in the theory and it is important to understand what

exactly it is. To start with we have identifed µ with the physical cut-off; however, there is another way

to interpret µ. The point is that if we wish to describe physical process at the energy scales Ephys or

below, or distance scales greater than ℓ = E−1
phys, then there is no reason why we cannot take the cut-off

to be at the scale µ = Ephys. In fact this would be the optimal choice since the efffective description

would then only involve modes with energies ≤ Ephys, i.e. the ones directly involved in the physical

process. So another to think of RG flow is that the couplings run with the typical energy scale of the

process being investigated, gi(µ), where µ is that energy scale.

Since the physical observables of the theory can be determined once the action is known, the RG

transformation itself follows from following how the action changes as the cut-off changes. The action

at a particular cut-off is known as the Wilsonian Effective Action S[φ;µ, gi] and since it depends on the

fields, as well as the couplings, the RG transformation must be generalized to

The Key RG Equation

S
[

Z(µ)1/2φ;µ, gi(µ)
]

= S
[

Z(µ′)1/2φ;µ′, gi(µ
′)
]

, (1.3)

where Z(µ) is known as “wavefunction renormalization” of the field. In the general case with many

fields, Z(µ) is a matrix quantity that can mix all the fields. The action of a QFT can be written as the

sum of a kinetic term and linear combination of “operators” Oi(x) which are powers of the fields and

their derivatives, e.g. φn, φn∂µφ∂
µφ, etc:2

S[φ;µ, gi] =

∫

ddx
[1

2
∂µφ∂

µφ+
∑

i

µd−digiOi(x)
]

(1.4)

where di is the classical dimension of Oi(x). Notice that we chosen the couplings to be dimensionless by

inserting the appropriate power of the cut-off to soak up the dimensions. This is because it is really the
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value of a coupling relative to the cut-off that is physically relevant. The wavefunction renormalization

factor Z(µ) can be thought of as the coupling to the kinetic term since3

S[Z1/2φ;µ, gi] =

∫

ddx
[Z

2
∂µφ∂

µφ+ · · ·
]

. (1.5)

It is often useful to think about infinitesimal RG transformations, in which case we define the beta

function of a theory

µ
dgi(µ)

dµ
. (1.6)

The running couplings then follow by integration of the beta-function equations above. Notice that due

to the fact that couplings always appear as combinations µd−digi means that the beta functions always

have the form

µ
dgi

dµ
= (di − d)gi + βquant.

gi
. (1.7)

One can think of the first term as arising from classical scaling and the second piece as arising from the

non-trivial integrating-out part of the RG transformation. If ~ were re-introduced exp[iS]→ exp[iS/~],

then the quantum piece would indeed vanish in the limit ~ → 0. We can also define the anomalous

dimension of a field φ as

γφ = −µ
2

d logZ(µ)

dµ
. (1.8)

In particle physics the ultimate physical observables are the probabilities for particular things to

happen. However, it is often useful, especially in massless theories where the S-matrix is problematic to

formulate because of long-range interactions, to consider the Green functions of fields. Schematically,

〈

φ(x1) · · ·φn(xn)
〉

gi(µ),µ
=

∫

µ
[dφ] eiS[φ;µ,gi(µ)]φ(x1) · · ·φ(xn)

∫

µ
[dφ] eiS[φ;µ,gi(µ)]

. (1.9)

It follows from (1.3) that for these quantities that depend on the field we must generalize (1.2) to take

account of wavefunction renormalization, giving

Z(µ)−n/2
〈

φ(x1) · · ·φn(xn)
〉

gi(µ),µ
= Z(µ′)−n/2

〈

φ(x1) · · ·φn(xn)
〉

gi(µ′),µ′
, (1.10)

What is particularly important about RG flows are their IR and UV limits; namely µ → 0 and

µ → ∞, respectively. As we flow towards the IR, all masses relative to the cut-off, that is m/µ,

increase. If a theory has a mass-gap (no massless particles) then as µ → 0 all physical masses are

become infinitely heavy relative to the cut-off and there is nothing left to propagate in the IR. Hence,

in the IR limit we have an empty, trivial or null theory. The other possibility is when the RG flow

starts on the:
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Critical Surface

The infinite dimensional subspace in the space-of-theories for which the mass gap
vanishes. These theories consequently have a non-trivial IR limit in which only the
massless degrees-of-freedom remain.

In this case, as µ → 0 the massless particles will remain and in all known cases the couplings flow

to a fixed point of the RG gi(µ)→ g∗i as µ→ 0 where the beta functions vanish:4

Equation for a fixed point or conformal field theory

µ
dgi

dµ

∣

∣

∣

g∗j

= 0 . (1.11)

The theories at the fixed points are very special because as well only having massless states particles

they have no dimension-full parameters at all. This means that they are scale invariant. However, this

scale invariance is naturally promoted to the group of conformal transformations and so the fixed point

theories are also “conformal field theories” (CFTs).5

In the neighbourhood of a fixed point, or CFT, gi = g∗i + δgi, we can alway linearize the RG flows:

µ
dgi

dµ

∣

∣

∣

g∗j +δgj

= Aijδgj +O(δg2
j ) . (1.12)

In a suitable diagonal basis for {δgi} which we denote {σi},

µ
dσi

dµ
= (∆i − d)σi +O(σ2) (1.13)

and so to linear order the RG flow is simply

σi(µ) =

(

µ

µ′

)∆i−d

σi(µ
′) . (1.14)

The quantity ∆i is called the scaling (or conformal) dimension of the operator associated to σi. In

general in an interacting QFT it will not be the classical scaling dimension and the difference

γi = ∆i − di (1.15)

is known as the anomalous dimension of the operator.

In a CFT the Green functions are covariant under scale transformations and this provides non-trivial

constraints. As an example, consider the 2-point Green function 〈φ(x)φ(0)〉. This satisfies the more

general RG equation (1.10)

Z(µ)−1
〈

φ(x)φ(0)
〉

gi(µ),µ
= Z(µ′)−1

〈

φ(x)φ(0)
〉

gi(µ′),µ′
. (1.16)
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At a fixed point gi(µ) = gi(µ
′) = g∗i and we have Z(µ) = (µ′/µ)2γ∗

φZ(µ′), where γ∗φ = γφ(g
∗
i ). Using

dimensional analysis we must have

〈

φ(x)φ(0)
〉

g∗i ,µ
= µ2dφG(xµ) , (1.17)

where dφ is the classical dimension of the field φ. Substituting into the RG equation allows us to solve

for the unknown function G, up to an overall multiplicative constant, yielding

〈

φ(x)φ(0)
〉

g∗i ,µ
=

c

µ2γ∗

φx2dφ+2γ∗

φ

∝ 1

x2∆∗

φ

(1.18)

where c is a constant. This is the typical power-law behaviour characteristic of correlation functions in

a CFT. In the problem for this lecture you will see that using the whole of the conformal group provides

even more information.

Relevant, Irrelevant and Marginal

Couplings in the neighbourhood of a fixed point flow as (1.14) and are classified in
the following way:

(i) If a coupling has ∆i < d the flow diverges away from the fixed point into the IR
as µ decreases and is therefore known as a relevant coupling.

(ii) If ∆i > d the coupling flows into the fixed point and is known as irrelevant .

(iii) The case ∆i = d is a marginal coupling for which one has to go to higher order
to find out the behaviour. If, due to the higher order terms, a coupling diverges
away/converges towards from the fixed point it is marginally relevant/irrelevant .
The final possibility is that the coupling does not run to all orders. In this case it
is truly marginal coupling and implies that the original fixed point is actually part
of a whole line of fixed points.

When we follow an RG flow backwards towards the UV all particle masses decrease relative to cut-off

and the so trajectory of a theory with a mass gap must approach the critical surface. In typical cases,

with or without a mass-gap, the trajectory either diverges off to infinity for finite µ or approaches a

fixed point lying on the critical surface in the limit µ → ∞. Below we show the RG flows around a

fixed point with 2 irrelevant directions and 1 relevant direction.
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Notice that the flows lying off the critical surface naturally focus onto the “renormalized trajectory”,

which is defined as the flow that comes out of the fixed point. The focusing effect, along with the fact

that there are only a finite number of relevant directions, leads to the property of Universality which is

the most important feature of RG flows. Universality also arises for flows starting on the critical surface

since in this case they all flow into the fixed point.

Universality

CFTs only have a finite (and usually small) number of relevant couplings. This
means that the domain-of-attraction of a fixed point (the set of all points in theory-
space) that flow into a fixed point is infinite dimensional (this dimension is the
number of irrelevant couplings). This also means that RG flows of a theory lying off
the critical surface strongly focus onto finite dimensional subspaces parameterized
by the relevant couplings of a fixed point as in the figure above. The implication of
this is that the behaviour of theories in the IR is determined by only a small number
of relevant couplings and not by the infinite set of couplings gi. This means that IR
behaviour of a given theory with couplings gi can lie in a small set of “universality
classes” which are determined by the domain of attraction of the set of fixed points.

Notice that the RG is directly relevant to the problem of taking a continuum limit of a QFT:

The Continuum Limit

This is the process of taking the cut-off from its original value µ to∞ whilst keeping the keeping the

physics at any energy less than the original µ fixed. Whether such a limit exists is a highly non-trivial

issue and central to our story. Notice that taking a continuum limit involves the inverse RG flow, that

is gi(µ) with µ increasing.

The RG Equation (1.2) shows how this can be achieved. We can send µ → ∞, as long as the UV

limit of gi(µ) is suitably well-defined which in practice means that gi(∞) is a fixed-point of RG (this is

what Weinberg calls “asymptotic safety). The resulting gi(µ) is known as a “renormalized trajectory”
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since it defines a theory on all length scales. Clearly a renormalized trajectory has to have the infinite

set of irrelevant couplings at the UV fixed-point vanishing. Searching for a renormalized trajectory

would seem to involve searching for a needle in an infinite haystack. Fortunately, however, universality

comes to our rescue:

Taking a Continuum Limit

We do not need to actually sit precisely on the renormalized trajectory in order to
define a continuum theory. All that is required is a one-parameter set of theories
defined with cut-off µ′ and with couplings gi = g̃i(µ

′) (which need not necessarily
be an RG flow, since this would mean sitting on the renormalized trajectory) for
which g̃i(∞) lies in the domain of attraction of the UV CFT, as illustrated below,
where the domain of attraction is the shaded area

The limit µ′ →∞ is defined in such a way that the IR physics at the original cut-off
scale µ is fixed. In particular, the number of parameters that must be specified in
order to take a continuum limit, i.e. which fix the IR physics, equals the number of
relevant couplings of the CFT. However, both the way that relevant couplings are
fixed at the scale µ and the values of the irrelevant couplings as g̃i(µ

′) as µ′ →∞ can
be defined in many different ways. So there are many ways to take a continuum limit,
or many “schemes”, which all lead to the same continuum theory. In particular, in
particle physics this always allows us to take very simple forms for the action with
a small number of operators (equal to the number of relevant coupling of the UV
CFT). However, at the same time it allows us to describe the same QFT by using,
say, a lattice cut-off.

Notes

1 In the literature, RG equations like (1.2) are also often written in infinitesimal form as

[

µ
∂

∂µ
+ βgi

∂

∂gi

]

F (gi; ℓ)µ = 0 . (1.19)

where βgi
= µdgi/dµ.

2 The use of the term “operator” or “composite operator” derives from a canonical quantization
approach to QFT in which one builds a Hilbert space and on which the fields becomes operators.
It is conventional to use this language when using the functional integral approach when strictly-
speaking the quantities are not operators.
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3 You may have noticed that wavefunction renormalization of the fields in QFT plays a special role
relative to the other coupling in the action. In a sense the definition of RG is ambiguous since the
beta-functions of the couplings depend implicitly on Z(µ)? Another more concrete way to phrase
this question is why did we choose the wavefunction renormalization in order to keep the kinetic
term intact after RG flow? The intuitive answer is that we want our theories to describe particles
which, at least in the case of a theory with a mass gap, when well separated are approximately
free and so have a free field propagator ∼ i/(p2 −m2

ph). This is why we re-scaled the field in the
effective action to keep the kinetic term like that for a free particle. The physical mass of the
particle mph (which is not the parameter m in the original action) is then identified by the position
of the pole in the propagator.

In the statistic physics interpretation of the functional integral, other choices of wavefunction
renormalization are sometimes appropriate. For instance, in d ≥ 4 one can impose a choice where
the kinetic term is relevant leaving a theory with no propagating field. In this case, non-zero
momentum modes of the field are suppressed in the IR and only the zero mode, which is constant
in space, survives. This limit is known as mean field theory in statistical physics.

4 Other more exotic possibilities, like limit cycles, have been found in some very bizarre theories
in two spacetime dimensions.

5 One potential point of confusion regarding fixed points of the RG flow is that the fields can still
have non-trivial wavefunction renormalization factors Z(φ). However, remember that the fields
are in some sense just dummy variables. So a fixed point theory, or CFT, is really scale covariant

rather than scale invariant.

The (connected part of the) conformal group consists of Poincaré transformations along with scale
transformations, or “dilatations” x→ sx, and special conformal transformations

x −→ x+ x2b

1 + 2b · x+ x2b2
(1.20)

The infinitesimal transformations for Lorentz, dilatations and special conformal transformations
are

δxµ = ǫµνx
ν , δxµ = sxµ , δxµ = x2bµ − 2xµ(x · b) , (1.21)

where ǫµν = −ǫµν . In any local QFT there exists an energy-momentum tensor Tµν and correlation
functions satisfy the Ward identity

n
∑

p=1

〈

φ1(x1) · · · δφp(xp) · · · φn(xn)
〉

= −
∫

ddx
〈

φ1(x1) · · · φn(xn)T µ
ν(x)

〉

∂µ

(

δxν) . (1.22)

Invariance of the QFT under Lorentz transformations requires Tµν = Tνµ while invariance under
dilatations T µ

µ = 0. From this it follows that these two conditions are sufficient to imply invariance
under infinitesimal special conformal transformations.
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2 Scalar Field Theories

We now illustrate RG theory in the context of the QFT of a single scalar field. Usually we write down

simple actions like

S[φ] =

∫

ddx
(1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4

)

, (2.1)

however, in the spirit of RG we should allow all possible operators consistent with spacetime symmetries.

In the case of a scalar field, all powers of the field and its derivatives, where the latter are contracted

in a Lorentz invariant way. For simplicity we shall restrict to operators even in φ → −φ.1. Simple

scaling analysis shows that a “composite operator” O containing p derivatives and 2n powers of the

field, schematically ∂pφ2n, has classical dimension

dO = n(d− 2) + p . (2.2)

Even at the classical level we see that the number of relevant/marginal couplings, those with dO ≤ d is

small. The classical dimensions of various operators are given in the table below.

O d > 4 d = 4 d = 3 d = 2
φ2 rel rel rel rel
φ4 irrel marg rel rel
φ6 irrel irrel marg rel
φ2n irrel irrel irrel rel

∂φµ∂
µφ marg marg marg marg

The classical scaling suggests that we only need keep track of the kinetic term and potential,2

L =
1

2
(∂µφ)2 − V (φ) , (2.3)

where we take

V (φ) =
∑

n

µd−n(d−2) g2n

(2n)!
φ2n , (2.4)

and where we have used the cut-off to define dimensionless couplings g2n.

Now we come to crux of the problem, that of finding the RG flow, or concretely the beta functions,

of the couplings. In order to do this we must apply the RG equation (1.3) to the Wilsonian Effective

Action S[Z(µ)1/2ϕ;µ, gi(µ)] defined for the theory with cut-off µ in such a way that the phenomena on

energy scales below the cut-off is fixed as µ is varied.

Before we can describe how to relate the theories with cut-off µ and µ′ let us first choose a cut-off

procedure. The most basic and conceptually simple way is to introduce a sharp momentum cut-off on
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the Fourier modes after Wick rotation to Euclidean space. In Euclidean space the Lagrangian (2.3) has

the form

L =
1

2
(∂µφ)2 + V (φ) (2.5)

and the functional integral becomes
∫

[dφ]e−S.3 The momentum cut-off involves Fourier transforming

the field

φ(x) =

∫

ddp

(2π)d
φ̃(p)eip·x (2.6)

and then limiting the momentum vector by a sharp cut-off |p| ≤ µ. The resulting theory is manifestly

UV finite since loop integrals can never diverge. In addition, we have a very concrete way of performing

the RG transformation. Namely, we split the field φ defined with cut-off µ′ into

φ = ϕ+ φ̂ , (2.7)

where ϕ has modes with |p| ≤ µ while φ̂ are modes with µ ≤ |p| ≤ µ′. In order to extract the beta-

function it is sufficient to consider the infinitesimal transformation with µ′ = µ + δµ. We can then

obtain the RG flow by considering how the action changes when we integrating out φ̂, so concretely

exp
{

− Seff[ϕ]
}

=

∫

[dφ̂] exp
{

− S[ϕ+ φ̂;µ′, g2n(µ′)]
}

. (2.8)

On the left-hand side we have the Wilsonian Effective Action which is to be identified with

Seff[ϕ] = S[Z(µ)1/2ϕ;µ, g2n(µ)] . (2.9)

Notice that we have taken Z(µ′) = 1 since we only need the variation as µ changes in order to extract

the anomalous dimension γφ.

Expanding the action on the right-hand side in powers of φ̂:4

S[ϕ+ φ̂] = S[ϕ] +

∫

ddx
(1

2
(∂µφ̂)2 +

1

2
V ′′(ϕ)φ̂2 +

1

6
V ′′′(ϕ)φ̂3 + · · ·

)

. (2.10)

Feynman Diagram Interpretation

Contributions to the effective action can be interpreted in term of Feynman diagrams
with only φ̂ on internal lines with a propagator 1/(p2 +g2µ

2), with p integrated over
the shell µ ≤ |p| ≤ µ′, and with only ϕ on external lines (but amputated meaning
no propagators on the external lines). The vertices are provided by the interaction
terms in V (ϕ + φ̂). Each loop involves an integral over the momentum of φ̂ which
lies in a shell between radii µ and µ′ in momentum space:

∫

µ≤|p|≤µ′

ddp

(2π)d
f(p) . (2.11)
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However, if we are only interested in an infinitesimal RG transformation µ′ = µ + δµ then the

integrals over internal momenta (2.11) become much simpler:
∫

µ≤|p|≤µ+δµ

ddp

(2π)d
f(p) =

µd−1

(2π)d

∫

dd−1Ω̂ f(µΩ̂) δµ , (2.12)

where Ω̂ is a unit d vector integrated over a unit Sd−1. In addition, since each loop integral brings a

factor of δµ, so to linear order in δµ only one loop diagrams are needed. This is equivalent to saying

that we only need the term quadratic in φ̂ in (2.10). The resulting integral over φ̂ is Gaussian and

yields5

Seff[ϕ] = S[ϕ] +
1

2
log det

(

−� + V ′′(ϕ)
)

. (2.13)

In order to extract the RG transformation we identify the left-hand side with the Wilsonian effective

action (2.9). In this case, one finds that no wavefunction renormalization is required.6 In order to

extract the effective potential (that is the part of the Lagrangian not involving derivatives of the field)

we can temporarily assume that ϕ is constant, in which case

1

2
log det

(

−� + V ′′(ϕ)
)

= aµd−1

∫

ddx log(µ2 + V ′′(ϕ)) δµ , (2.14)

where a = Vol(Sd−1)/(2(2π)d) = 2−dπ−d/2/Γ(d/2). From this expanding in powers of ϕ it follows that

µ
dg2n

dµ
= (n(d− 2)− d)g2n − aµ2n d2n

dϕ2n
log(µ2 + V ′′(ϕ))

∣

∣

∣

ϕ=0
. (2.15)

The contributions on the right-hand side are identified with one-loop diagrams of the form

with 2n external legs.

From (2.15), it follows, for example, that

µ
dg2

dµ
= −2g2 −

ag4

1 + g2

,

µ
dg4

dµ
= (d− 4)g4 +

3ag2
4

(1 + g2)2
− ag6

1 + g2
,

µ
dg6

dµ
= (2d− 6)g6 −

30ag3
4

(1 + g2)3
+

15ag4g6

(1 + g2)2
− ag8

1 + g2

.

(2.16)
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Notice that the quantum contributions involve inverse powers of the factor 1 + g2 which physically is

m2/µ2 + 1. So when m ≫ µ, the quantum terms are suppressed as one would expect on the basis of

decoupling.

Decoupling

Decoupling expresses the intuition that a particle of mass m cannot directly affect
the physics on energy scales ≪ m. For instance, the potential due to the exchange
of massive particle in 4 dimensions is ∼ e−mr/r. This is exponentially suppressed
on distances scales ≫ m−1.

The beta functions allow us to map-out RG flow on theory space. The first thing to do is to find

the RG fixed points corresponding to the CFTs. The “Gaussian” fixed point is the trivial fixed point

where all the couplings vanish. Linearizing around this point, the beta-functions are

µ
dg2n

dµ
=

(

n(d− 2)− d
)

g2n − ag2n+2 . (2.17)

So the scaling dimensions are the classical dimensions ∆2n = d2n = n(d − 2), i.e. the anomalous

dimensions vanish, although the couplings that diagonalize the matrix of scaling dimensions σ2n are

not precisely equal to g2n due to the second term in (2.17). In particular, σ2 = g2 is always relevant,

σ4 = g4 + ag2/(2− d) is relevant for d < 4, irrelevant for d > 4 and marginally irrelevant for d = 4. In

this latter case we need to go beyond the linear approximation. Since g6 is irrelevant in d = 4, we shall

ignore it, in which case since a = 1/(16π2) we have

µ
dg4

dµ
= µ

dg4

dµ
=

3

16π2
g2
4 , (2.18)

whose solution is

1

g4(µ)
= C − 3

16π2
log µ . (2.19)

This shows that g4 is actually marginally irrelevant at the Gaussian fixed point because it gets smaller

as µ decreases. We usually write the integration constant in terms of a dimensionful parameter Λ as

g4(µ) =
16π2

3 log(Λ/µ)
, (2.20)

with µ < Λ. This is our first example of dimensional transmutation where the degree-of-freedom of a

dimensionless coupling g4 has changed into a dimensionful quantity, namely Λ.

To find other non-trivial fixed points is difficult and the only way we can make progress is to work

perturbatively in the couplings. This turns out to be consistent only if we accept the perversion of

working in arbitrary non-integer dimension and regard ǫ = 4− d as a small parameter. In that case, we

find a new non-trivial fixed point known as the Wilson-Fischer fixed point at

g∗2 = −1

6
ǫ+ · · · , g∗4 =

1

3a
ǫ+ · · · , g∗2n>4 ∼ ǫn + · · · (2.21)
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In particular, the Wilson-Fischer fixed point is only physically acceptable if ǫ > 0, or d < 4, since

otherwise the couplings g∗2n are all negative and the potential of the theory would not be bounded from

below. In the neighbourhood of the fixed point in the g2, g4 subspace we have to linear order in ǫ

µ
d

dµ

(

δg2

δg4

)

=

(

ǫ/3− 2 −a(1 + ǫ/6)
0 ǫ

) (

δg2

δg4

)

, (2.22)

with

a = 1/(16π2) + ǫ(1− γE + log 4π)/32π2 +O(ǫ2) . (2.23)

So the scaling dimensions of the associated operators and the associated couplings are

∆2 = 2− 2ǫ/3 , σ2 = δg2 ,

∆4 = 4 , σ4 = δg4 −
a

2 + ǫ/3
δg2 .

(2.24)

So at this fixed point only the mass coupling is relevant.

The flows in the (g2, g4) subspace of scalar QFT for small ǫ > 0 are shown below

The Gaussian and Wilson-Fischer fixed points are shown and all the other couplings are irrelevant and

so flow to the (g2, g4) subspace. Notice that the critical surface intersects this subspace in the line that

joins the two fixed points as shown

Although we have only proved the existence of the Wilson-Fischer fixed point for small ǫ, it is

thought to exist in both d = 3 and d = 2. In the language of statistical physics it lies in the universality

class of the Ising Model.7 What our simple analysis fails to show is that in d = 2 there are actually an

infinite sequence of additional fixed points.8
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Vacuum Expectation Values

In a scalar QFT, the field can develop a non-trivial Vacuum Expectation Value
(VEV) 〈φ〉 6= 0. This possibility is determined by finding the minima of the effective
potential . This is the potential on the constant (or zero) mode of the field after all
the non-zero modes have been integrated out. In other words, this is the potential
in the Wilsonian effective action in the limit µ → 0.9 A VEV develops when the
effective potential develops minima away from the origin as in

Notice that since we started with a theory symmetric under φ → −φ, there will
necessarily two possible vacuum states with opposite values of 〈φ〉. A QFT must
choose one or the other and so we say that the symmetry φ→ −φ is spontaneously
broken.10

Now that we have a qualitative picture of the RG flows, it is possible to describe the possible

continuum limits of scalar field theories:

d ≥ 4: In this case, only the Gaussian fixed point exists and this fixed point only has one rele-

vant direction, namely the mass coupling g2. Hence there is a single renormalized trajectory on which

g2(µ) = (µ′/µ)2g2(µ
′) while all the other couplings vanish. This renormalized trajectory describes the

free massive scalar field. If we sit precisely at the fixed point we have a free massless scalar field. In

particular, according to this analysis there is no interacting continuum theory in d = 4.

d < 4: At least for small enough ǫ (whatever that means) there are two fixed points and a two-

dimensional space of renormalized trajectories parameterized by the couplings g2 and g4 on which g2n,

n > 2 have some values fixed by g2 and g4. In particular, if we parameterize our continuum theories by

the values of g2 and g4 then they are limited to the region shown below
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In particular, theory (a) is free and massive (and must have g2 > 0); (b,d) is interacting and massive

and in the UV becomes free since the trajectories originate from the Gaussian fixed point. In case (d)

g2 < 0 and the field has a VEV; (c,e) describe a massive interacting theory that becomes the Ising

model universality class in the UV, case (e) has g2 < 0 and a VEV; (f) describes a massless interacting

theory that interpolates between a free theory in the UV and the Ising Model in the IR; (g) is a free

massless theory; and (h) is the Ising model CFT.

Notes

1 This is an example of using a symmetry to restrict theory space. The important point is that
the symmetry is respected by RG flow and so is self-consistent.

2 Note, however, that, in principle, there is no difficulty in keeping track of all the couplings
including the higher derivative terms.

3 We take it as established fact that one can move between the Minkowski and Euclidean versions
of the theory without difficulty. In our conventions, when we Wick rotate gµνa

µbν = a0b0− a1b1−
a2b2 − a3b3 → −aµbµ = −a0b0 − a1b1 − a2b2 − a3b3. In Euclidean space the functional integral
∫

[dφ]e−S[φ] can be interpreted as a probably measure (when properly normalized) on the the field
configuration space. This is why Euclidean QFT is intimately related to systems in statistical
physics.

4 In the following we have ignored the term which is linear in φ̂. The reason is that we are after
an effective action for ϕ which is local (that is a spacetime integral over terms which are powers
of the field and its derivatives). The linear coupling in φ̂ gives rise to graphs which are “1-particle
reducible”, the simplest of which is shown below

The contribution from this graph is only non-vanishing if µ ≤ |p1 +p2 +p3| ≤ µ+ δµ. In particular
as long as we work with local actions which are expansions in derivatives, i.e. momenta, we can
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ignore such contributions. These non-analytic contributions are the price we pay for working with
a sharp momentum cut-off. It is important to understand that although the effective action would
have these non-analytic contributions the observables of the theory, namely the Green functions
or the S-matrix, would be perfectly well behaved. For a discussion of this in much greater detail,
see the excellent lecture notes of Weinberg.

5 Here we used the identity

∫

dnx e−x·A·x =
πn/2

det A
= πn/2e−

1
2 log det A (2.25)

for a finite matrix A and extended it to the functional case.

6 The terms quadratic in φ come from the diagram below

which gives a contribution

∼

∫

ddk

(2π)d
φ̃(k)φ̃(−k)

∫

ddp

(2π)d
1

p2 + g2µ2
= const.×

∫

ddxφ(x)2 . (2.26)

Notice that the resulting expression does not involve derivatives of the field because, due to mo-
mentum conservation, no external momentum can flow in the loop. Hence, there is no wavefunction
renormalization.

7 The Ising Model is a statistical model defined on a square lattice with spins σi ∈ {+1,−1} at
each site and with an energy (which we identify with the Euclidean action)

E = − 1

T

∑

(i,j)

σiσj . (2.27)

The sum is over all nearest-neighbour pairs (i, j) and T is the temperature. Notice that at low
temperatures, the action/energy favours alignment of all the spins, while at high temperatures
thermal fluctuations are large and the long-range order is destroyed. This can be viewed as a
competition between energy and entropy. There is a 2nd order phase transition at a critical
temperature T = Tc at which there are long-distance power-law correlations. This critical point is
in the same universality class as the Wilson-Fischer fixed point and the water-steam critical point.

8 In d = 2 there are powerful methods for analyzing CFTs because in d = 2 the conformal group
is infinite dimensional since it consists of any holomorphic transformation t± x→ f(t± x).

9 It can be shown that the effective potential defined in terms of the Wilsonian effective action
is equal to the effective potential extracted from the more familiar 1-Particle Irreducible (1-PI)
effective action defined in perturbation theory—at least for a QFT with a mass gap. In the
massless case the latter quantity is ill-defined due to IR divergences.
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10 The reason why spontaneous symmetry breaking occurs is that the zero mode of a scalar
field is not part of the variables that are integrated over in the measure

∫

[dφ], rather it acts as a
boundary condition on the scalar field at spatial infinity. However, this is only true in spacetime
dimensions d > 2: in d = 2 one must integrate over the zero mode and so spontaneous symmetry
breaking of continuous symmetries cannot occur. Of course φ → −φ is a discrete symmetry that
can still be spontaneously broken even in d = 2.

20



3 RG and Perturbation Theory

In this lecture, we consider how to implement RG ideas in the context of perturbation theory and in a

way which is easier to generalize to other theories.

It is the principle of universality that allows us to formulate our theories in terms of simple actions.

All we need do is include the relevant couplings: all the irrelevant couplings can be taken to vanish.

So—at least for d > 2—it is sufficient to write the simple action in (2.1).1 In order to take a continuum

limit, we need to let the “bare couplings” gi(µ
′) to depend on the cut-off µ′ in such a way that the

physics at a physically relevant scale µ < µ′ remains fixed. This is guaranteed if we use the RG equation

(1.2) and take µ′ →∞ with the couplings gi(µ
′) following the RG flow into the UV. However, this would

mean keeping all the couplings to irrelevant operators. As we described in Lecture 1, there is no need

to do this. It is sufficient to keep only the relevant couplings g2(µ
′) and g4(µ

′) (as well as the kinetic

term) and choose all the irrelevant couplings to vanish. So in this sense, the continuum limit flow is

not strictly speaking an RG flow; rather it is the RG flow restricted to the space of relevant couplings.

Perturbation Theory: The Facts of Life

Now we come to a very important issue. In real life we have to rely almost always on
perturbation theory in the couplings. But according to the RG the couplings flow
and this begs the question as to which coupling should use to perform perturbation
theory? For example in d = 4, g4 runs according to (2.19). So the coupling at the
scale µ′ is an infinite perturbative series of the coupling at µ:

g4(µ
′) =

g4(µ)

1 + 3
16π2 g4(µ) logµ′/µ

= g4(µ)− 3

16π2
g4(µ)2 logµ′/µ+ · · · . (3.1)

If we could completely sum all of the perturbative expansion in g4(µ), then the
resulting physical observables would—by definition—be independent of µ. However,
since perturbation theory involves a truncation it is clear that perturbation theory in
g4(µ) will be different from perturbation theory in g4(µ

′). Do we have a choice of µ
and can we choose µ so that g4(µ) is small and perturbation theory is reliable? The
answer is practically no: the appropriate choice of µ is dictated by the characteristic
physical scale involved and we just have to hope that at this scale g4(µ) is small. If
we try to do perturbation at a non-physical scale then any improvement we might
make in having a smaller g4(µ) is compensated by larger coefficients multiplying the
powers of the coupling. We will see an example of how the physical scale dictates
the choice of µ in a procedure known as renormalization group improvement .

So we should perform the perturbation expansion in the coupling at the physically relevant energy

scale µ, i.e. in the “renormalized coupling” λ ≡ λ(µ) (we choose to use λ and m rather than g4 and

g2 in the following description) rather than the “bare coupling” λb ≡ λ(µ′) since λ(µ) < λ(µ′). To this
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end, we split up the bare Lagrangian into the “renormalized” part and the “counter-term” part:

L =
1

2
(∂µφb)

2 +
1

2
m2

bφ
2
b +

1

4!
λbφ

4
b = Lr + Lct (3.2)

where Lr has the same form as the bare Lagrangian, but with bare quantities replaced by renormalized

ones (which we denote φ, m and λ):

Lr =
1

2
(∂µφ)2 +

1

2
m2φ2 +

1

4!
λφ4 (3.3)

and Lct, the counter-term Lagrangian,

Lct =
1

2
δZ(∂µφ)2 +

1

2
δm2φ2 +

1

4!
δλφ4 . (3.4)

such that the bare quantities are

m2
b = m2 + δm2 , λb = λ+ δλ , φb =

√
1 + δZφ . (3.5)

It is important to emphasize that although we have denoted the counter-terms as δ# they certainly are

not infinitesimals.

Perturbation theory can be be performed in the renormalized coupling λ and the counter-terms

found order-by-order in λ without prior knowledge of the RG flow. In this point-of-view, the counter-

terms are chosen to cancel the divergences that occur in the limit µ′ →∞.2 For instance, in d < 4, the

only Feynman diagrams which are superficially divergent3 have 2 external legs and are shown below:

While in d = 4 (and also for small ǫ = 4− d) all diagrams with 2 and 4 external lines are superficially

divergent.

While we could continue with the sharp momentum cut-off, it is time to acknowledge its frailties. It

has been a useful device to introduce the concept of RG flow, however, when we start to investigate gauge

theories we discover that it is not obvious how to make the näıve sharp momentum cut-off consistent

with gauge invariance. Fortunately, our all-dimension treatment of the scalar field naturally leads to

the most important regularization scheme—at least within perturbation theory—known as dimensional

regularization. The idea is to use the fact that we have defined the theory in d = 4− ǫ dimensions and

treat ǫ as a variable in its own right. Then, after performing the loop integrals, we will have analytic

22



functions of ǫ. The divergences in the physical dimensions d = 2, 3, 4 . . . show up as poles as ǫ→ 2, 1, 0.

For example, in four dimensions we make the replacement

∫

d4p

(2π)4
−→ µ4−d

∫

ddp

(2π)d
, (3.6)

where µ is a parameter, with unit mass dimension, which is introduced to make sure that the momentum

integrals have the correct dimension. We will see that in a subtraction scheme known as minimal

subtraction it plays a rôle analogous to the Wilsonian cut-off scale µ which is the scale at which the

renormalized coupling are defined.

As an example consider the quadratically divergent one-loop graph in d = 4

which involves the loop integral

λµ4−d

∫

ddp

(2π)d
· 1

p2 +m2
= λµ4−d VolSd−1

(2π)d

∫ ∞

0

pd−1dp

p2 +m2

= λ2−dπ−d/2µ4−dmd−2Γ(1− d/2) .

(3.7)

In the limit ǫ = 4− d→ 0 this equals

−λm
2

8π2ǫ
+
λm2

16π2

[

− 1 + γE − log
4πµ2

m2

]

+O(ǫ) . (3.8)

The divergences can be removed by a mass counter-term of the form

δm2 =
λm2

16π2ǫ
+
λm2

32π2

(

− γE + log 4π
)

. (3.9)

As we have previously stated there is considerable freedom in removing the divergences. The choice

(3.9) is known as modified minimal subtraction, denoted MS. Here “minimal” refers to the singular

part in (3.9) and “modified” refers to the second and third terms which are optional extras but part of

the perturbative industry standard.

The other divergent diagram at one-loop is
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In this case the loop integral is logarithmically divergent in d = 4:

λ2µ4−d

∫

ddp

(2π)d
· 1

p2 +m2
· 1

(p+ k)2 +m2
, (3.10)

where k = k1 + k2. Expanding in terms of the external momentum k it is only the term k = 0 which is

divergent since every power of k effectively gives one less power of p for large p. The divergent piece is

then

λ2µ4−d

∫

ddp

(2π)d
· 1

(p2 +m2)2
= λ2µ4−d VolSd−1

(2π)d

∫ ∞

0

pd−1dp

(p2 +m2)2

= λ22−dπ−d/2µ4−dmd−4Γ(2− d/2)

=
λ2

8π2ǫ
+

λ2

16π2

[

− γE + log
4πµ2

m2

]

+O(ǫ) .

(3.11)

In minimal subtraction the divergence can be cancelled by the counter-term

δλ =
3λ2

16π2ǫ
+

3λ2

32π2

(

− γE + log 4π
)

. (3.12)

Later we shall see that regularization schemes like minimal subtraction are very different in character

from alternative and more physically motivated schemes.4

As mentioned above, the renormalized couplings will depend on the energy scale µ in a way that

is analogous to µ of the sharp momentum cut-off scheme. In fact in the we can recover the spirit of

Wilson’s RG by using what is known as the background field method . The idea is to expand the field φ

in the renormalized action in terms of a slowly varying background field and a more rapidly fluctuating

part:

φ = ϕ+ φ̂ . (3.13)

This is analogous to the decomposition (2.7) in the sharp momentum cut-off scheme. We then treat φ̂

as the field to integrate over in the functional integral whilst treating ϕ as a fixed background field.

Since ϕ is slowly varying we can expand in powers of derivatives of ϕ and as in Lecture 2, and in

order to calculate the effective potential we can take ϕ to be constant. The effective potential in d = 4

to one loop is then

Veff(ϕ) = V (ϕ) +
1

2
µ4−d

∫

ddp

(2π)d
log

(

p2 + V ′′(ϕ)
)

= V (ϕ)−
(

V ′′(ϕ)
)2

32π2ǫ
−

(

V ′′(ϕ)
)2

64π2

[3

2
− γE + log

4πµ2

V ′′(ϕ)

]

.

(3.14)

Subtracting the divergence with a counter-term in the MS scheme gives

Veff(ϕ) = V (ϕ)−
(

V ′′(ϕ)
)2

64π2

[3

2
+ log

µ2

V ′′(ϕ)

]

. (3.15)
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With a potential V (φ) = 1
2
m2φ2 + 1

4!
λφ4, notice that the counter-term is proportional to

(

V ′′(ϕ)
)2

=
(

m2 + 1
2λϕ

2
)2

(3.16)

which has the same form as the original potential. In other words, we only need to add counter-terms

for m2 and λ. With a little more work one finds that the counter-terms are precisely (3.9) and (3.12).

The RG flow of the dimensionless couplings g2 = m2/µ2 and g4 = λ can be deduced, as before, by

requiring that the effective potential satisfies an RG equation. For instance, in the form (1.3),

Veff(Z(µ)1/2ϕ;µ, gi(µ)) = Veff(Z(µ′)1/2ϕ;µ′, gi(µ
′)) , (3.17)

where now µ is no longer the Wilsonian cut-off but is the mass scale introduced in dimensional regu-

larization to “fix up” the dimensions.

To one-loop order there is no wavefunction renormalization and using the above, we find

µ
dg2

dµ
= −2g2 + ag2g4 ,

µ
dg4

dµ
= 3ag2

4 .

(3.18)

where a = 1/16π2. Compare (3.18) with the momentum cut-off scheme (2.16) (with d = 4 and

with the irrelevant couplings set to 0). The first difference is that with the latter scheme the beta-

function is exact at the one-loop level, whereas (3.18) receives contributions to all loop orders. Secondly,

the momentum cut-off scheme displays manifest decoupling when m ≫ µ, whereas, on the contrary,

dimensional regularization with MS subtraction does not. In the next lecture we will explore this in

more detail and explain how decoupling must be implemented by hand in the MS scheme. What these

two schemes illustrate is that the actual RG flows depend in detail on the chosen scheme. However, it is

a central feature of the theory that the “topological” properties of the flows, meaning existence of fixed

points, or whether a coupling is relevant or irrelevant, is scheme-independent. For example, if we work

in dimensions d < 4 rather than d = 4, then one can demonstrate the existence of the Wilson-Fischer

fixed point.

Our analysis of scalar field theories leads to the following important conclusion for spacetime dimen-

sion d = 4. Since we have only proved the existence of the Gaussian fixed point, the only continuum

theory is a free massive or massless theory. This lack of an interacting continuum scalar theory in 4

dimensions is known as triviality . But, you will say, haven’t we been able to find a renormalizable

theory in 4 dimensions order-by-order in the perturbative expansion: isn’t this an interacting theory?

However, something does go terrible wrong with perturbation theory and this is caused by the wish to

keep the renormalized coupling finite whilst sending the cut-off µ′ →∞. We can see what goes wrong

by looking at the flow of the coupling (3.1): we see that as µ′ increases there is singularity at

µ′ = µe16π2/3g4(µ) , (3.19)
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where the bare coupling diverges. This is known as a Landau pole (this terminology is properly associated

with QED which, as we shall see, suffers the same fate). Of course this is exactly what we expected:

the coupling g4(µ) is irrelevant at the Gaussian fixed point and so RG flow into the UV diverges away

from the fixed point. Now we see within the one-loop approximation that the flow actually diverges to

infinity at a finite value. So the conclusion is, in the absence of a non-trivial fixed point, scalar QFT

is not really a renormalizable theory in d = 4. This conclusion applies more or less to the scalar Higgs

sector of the standard model, and so in this sense the standard model is not truly a renormalizable

theory and so, in a sense, predicts its own demise.

Summary

We now sketch how to use perturbation theory (when valid) and the background
field method to calculate the RG flows of the revelant couplings.

(1) Write down a Lagrangian Lr(φ) with all the “relevant” couplings gr
i .

(2) Split φ = ϕ + φ̂ and calculate loop diagrams with external ϕ and internal φ̂
(more precisely only include diagrams which are one particle irreducible 1PI) and
add counter-terms along the way to cancel divergences. It is important that the
counter-terms have the same form as Lr(ϕ) (if not then you didn’t identify the
complete set of relevant couplings).

(3) The analogue of the Wilsonian effective action in the special subspace of theories
parameterized by the relevant coupling is then

S[ϕ;µ, gr
i ] =

∫

ddx
(

Lr(ϕ) + Lct(ϕ) + L1PI(ϕ)
)

. (3.20)

Note that this action will include all the irrelevant couplings as well, but these will
not be independent rather they will depend on the relevant couplings.

(4) Extract the RG flows of the revelant couplings in Lr(ϕ) by imposing the RG
equation (1.3).

Notes

1 In d = 2 the situation is more complicated and we have to allow for an arbitrary potential since
all operators φn are potentially relevant.

2 There is considerable freedom in choosing the way that the divergent terms are cancelled. These
choices should be thought of as part of the regularization scheme.

3 The question of whether a given diagram is divergent can be partially addressed by calculating
the superficial degree of divergence D. This is the power of the overall momentum dependence of
the diagram: each propagator contributes ∼ p−2 and each loop integral ∼ pd. One can show for a
φ4 theory that for a diagram with L loops and E external lines

D = (d− 4)L+ 4− E . (3.21)
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Notice that when D ≥ 0 the diagram is divergent, however, the converse doesn’t imply convergence
since a sub-diagram may be superficially divergent. When a theory only has superficial divergences
in a finite number of diagrams it is called super-renormalizable. For small ǫ = 4−d we expand first
in ǫ and later take the continuum limit µ→∞. In this case, the superficially divergent diagrams
include all those 2 or 4 external legs.

4 MS subtraction is not the only way to remove the divergences in dimensional regularization. A
more physically motivated scheme involves fixing the physical mass and physical coupling defined
in terms of the propagator and Green functions at some characteristic Euclidean momentum scale
µ̃:

〈φ(p1)φ(p2)〉 =
1

p2
1 +m2

δ(4)(p1 + p2) ,

〈φ(p1)φ(p2)φ(p3)φ(p4)〉 = λδ(4)(p1 + p2 + p3 + p4) ,

(3.22)

when p2
i = µ̃2. If we Wick rotate back to Minkowski space these conditions occur at space-like

momenta p2
i = −µ̃2.

In this kind of momentum-dependent scheme, the quantity µ̃ plays the rôle of the RG scale. The
counter-terms δgi depend explicitly on µ̃ and the beta functions are equal to

µ̃
dδgi

dµ̃
, (3.23)

where as usual the gi are made dimensionless by using µ̃. It is important to realize, as we shall see
in the next lecture, that the beta-functions in this scheme are very different from the ones in the
MS scheme.
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4 Gauge Theories and Running Couplings

In this lecture, we turn our attention to the RG properties of gauge theories. We begin with the simplest

gauge theory; namely, QED. In order that QED has interesting RG flow we require it to be interacting

and to achieve this end we couple it to a charged scalar. The scalar field must necessarily be complex

and for simplicity we take a (Minkowski) Lagrangian without any self-interactions for φ:

L = −1

4
FµνF

µν + |Dµφ|2 −m2|φ|2 , (4.1)

where Dµφ = ∂µφ+ieAµφ and Fµν = ∂µAν−∂νAµ. The theory is invariant under gauge transformations

φ(x)→ eieα(x)φ(x) , Aµ(x)→ Aµ(x)− ∂µα . (4.2)

We want to focus on the RG flow of the charge e. In order to do this it is actually more convenient

to re-scale Aµ → Aµ/e so that the coupling now appears in front of the photon’s kinetic term

L = − 1

4e2
FµνF

µν + |(∂µ + iAµ)φ|2 −m2|φ|2 . (4.3)

The reason why this is a convenient choice in the context of RG is that under the flow the structure of

the covariant derivative must remain intact otherwise gauge invariance would not be respected. This

means that Aµ with the Lagrangian as above must undergo no wavefunction renormalization, rather we

interpret any renormalization of the gauge kinetic term as a renormalization of the electric charge e.1

In order to find the RG flow of the coupling we use the background field method and consider Aµ

as a background field and treat φ as the fluctuating field that is to be integrating out in the functional

integral. The interaction terms are

Lint = iAµ

(

φ∂µφ∗ − φ∗∂µφ
)

+ AµA
µ|φ|2 . (4.4)

At the one-loop level there are 2 relevant graphs shown below

The first one cannot depend on the external momentum k and its rôle is to cancel the k-independent

contribution of the first. In dimensional regularization, and temporarily Wick rotating to Euclidean

space, the second diagram yields

µ4−d

∫

ddp

(2π)d
· (2p+ k)µ(2p+ k)ν
(

p2 +m2
)(

(p+ k)2 +m2
) . (4.5)
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The standard trick for dealing with a product of propagators is to introduce Feynman parameters,

which in this case involves the identity

1

p2 +m2
· 1

(p+ k)2 +m2
=

∫ 1

0

dx
1

(

(p+ xk)2 + x(1− x)k2 +m2
)2 (4.6)

and then shifting p→ p− xk, in which case (4.5) becomes

µ4−d

∫ 1

0

dx

∫

ddp

(2π)d
· (2p+ (1− 2x)k)µ(2p+ (1− 2x)k)ν

(

p2 + x(1− x)k2 +m2
)2

= µ4−d Γ(1− d/2)

(4π)d/2

∫ 1

0

dx∆d/2−2
[

(1− d/2)(1− 2x)2kµkν + 2∆δµν

]

(4.7)

where ∆ = x(1− x)k2 +m2. The second term in the bracket can be re-written using the identity

2

∫ 1

0

dx∆d/2−1 = k2(d/2− 1)

∫ 1

0

dx (1− 2x)2∆d/2−2 + 2md−2 . (4.8)

The last term here cancels the contribution

µ4−d

∫

ddp

(2π)d

δµν

p2 +m2
= µ4−d Γ(1− d/2)

(4π)d/2
md−2 (4.9)

from the first diagram above. This leaves

µ4−d

(4π)d/2

(

kµkν − k2δµν

)

Γ(2− d/2)

∫ 1

0

dx (1− 2x)2
(

x(1− x)k2 +m2
)d/2−2

. (4.10)

The structure of this result is very significant because if we expand in powers of k then a given term

k2n
(

kµkν − k2δµν

)

(4.11)

in momentum space corresponds to a term of the form Fµν∂
2nF µν in the effective action. This is because

in momentum space

Fµν(−k)F µν(k) −→
−

(

ikµAν(−k)− ikνAµ(−k)
)(

ikµAν(k)− ikνAµ(k)
)

= −2
(

kµkν − k2gµν

)

Aµ(−k)Aν(k) .
(4.12)

Since the field strength Fµν is gauge invariant, the one-loop calculation is consequently entirely consistent

with gauge invariance. Taking the limit ǫ→ 0, (4.10) includes the factor

∫ 1

0

dx (1− 2x)2
[ 1

8π2ǫ
− γE

16π2
− 1

16π2
log

x(1− x)k2 +m2

4πµ2

]

. (4.13)

In the MS scheme the required counter-term is

Lct = − 1

12

[

− 1

8π2ǫ
+
γE − log 4π

16π2

]

Fµν F
µν (4.14)

where we used
∫ 1

0

(1− 2x)2 =
1

3
. (4.15)
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Being careful with the overall normalization, gives the one-loop effective action for the photon in

Minkowski space in the MS scheme:

Seff[Aµ] = −1

4

∫

ddk
[ 1

e2
− 1

16π2

∫ 1

0

dx (1− 2x)2 log
m2 − x(1− x)k2

µ2

]

Fµν(−k)F µν(k) . (4.16)

The one-loop beta function in the MS scheme can then be deduced by demanding that Seff satisfies an

RG equation of the form (1.3) but with no wavefunction renormalization:

Seff[Aν ;µ, e(µ)] = Seff[Aν ;µ
′, e(µ′)] . (4.17)

This yields the beta function

µ
de

dµ
=

e3

16π2

∫ 1

0

dx (1− 2x)2 =
e3

48π2
. (4.18)

It is interesting to repeat the calculation for a fermion. A Weyl fermion2 couples to a gauge field

via the kinetic term

Lkin = iψ̄α̇σ̄µ
α̇αDµψ

α . (4.19)

In this case the fermion contributes to the vacuum polarization via the diagrams

If one follows through the derivation, the only difference in the final result amounts to replacement of

(1− 2x)2 → 4x(1− x) in (4.16).3

Solving for the running coupling

1

e(µ)2
= C − 1

24π2
log µ , or e(µ)2 =

24π2

log Λ/µ
. (4.20)

Notice that e, like the coupling g4 in scalar field theory, is irrelevant at the Gaussian fixed point. So e(µ)

becomes smaller in the IR but has a Landau pole in the UV—at least within the one-loop approximation.

Hence QED, like scalar QFT, does not seem to have a continuum limit in d = 4. Of course this does

not rule out a more complicated “UV completion” a issue that we will return to later.

There is tricky issue with regularization schemes like MS which do not involve setting conditions at

a particular momentum, or energy, scale. If we compare the beta functions in (2.16), and (3.18) then

the former exhibit manifest decoupling meaning that if we start with some cut-off µ > m and flow down

towards the IR then when µ < m the RG flows are suppressed. This makes perfect physical sense: a
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particle of mass m only has effects when the energy scale is greater than. However, in the MS scheme

(3.18) (or in the case of QED (4.18)) there does not appear to be any decoupling at all, the coupling is

still running when µ≪ m. While there is nothing wrong with this in principle, it is not very physical;

in perturbation theory powers of e(µ) → 0 as µ → 0 will be compensated by powers of log µ → −∞
as in (4.16). Although, we shouldn’t make the mistake of thinking of the couplings in the action as

physical couplings, we can introduce a more physically motivated coupling in a momentum-independent

regularization schemes like MS by decoupling the massive particle by hand when the RG scale µ crosses

the threshold at µ = m. The recipe is as follows: two theories are written down, one including the

particle valid for µ ≥ m and one without the field for µ ≤ m. At µ = m physical quantities in the

the two theories are matched. For example, in scalar QED, for µ ≥ m the coupling e(µ) runs as in

(4.18). At µ = m the electron is removed from the theory to leave the photon by itself. This is a

non-interacting theory and the couplings does not run, rather it is frozen at the value e(m). The nasty

log µ factors disappear from perturbation theory to be left with a nice power series in e(m) which is a

useful series if e(m) is small enough, which in QED is the case since e(me)2

4π
= 1

137
.

Hence, in this more general philosophy as one flows into the IR, particles are decoupled and removed

from the theory as the RG scale µ passes the appropriate mass thresholds. In a mass-dependent scheme

decoupling is automatic. For example, if instead of performing minimal subtraction we rather fix the

value of the effective coupling in (4.16) at the (Euclidean) momentum scale k2 = µ̃2 (see note 4 of the

last lecture). This requires a counter-term

Lct = −1

4

∫ 1

0

dx (1− 2x)2
[ 1

8π2ǫ
− 1

16π2
log

x(1− x)µ̃2 +m2

µ2

]

FµνF
µν . (4.21)

We now think of µ̃ as the RG scale and the beta-function follows as

µ̃
de

dµ̃
=

e3

16π2

∫ 1

0

dx (1− 2x)2 µ̃2x(1− x)
m2 + µ̃2x(1− x) (4.22)

which does indeed vanish when µ̃≪ m—unlike (4.18). A comparison between the 2 running couplings

in the form of e−3µde/dµ (the MS one dashed) is shown below
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Non-abelian gauge theories

Now we turn to the generalization of the RG flow of the gauge coupling to non-abelian gauge

theories. The Lagrangian for a non-abelian gauge field coupled to a massive scalar field transforming

in a representation r of the gauge group G has the form

L = − 1

4g2
F a

µνF
a µν +

∣

∣Dµφi

∣

∣

2 −m2|φi|2 , (4.23)

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν , (4.24)

and

Dµφi = ∂µφi + iAa
µT

a
ijφj , (4.25)

where fabc are the structure constants of the gauge groupG and T a
ij are the generators of a representation

r of G, so as matrices

[T a, T b] = ifabcT c . (4.26)

The RG flow of the gauge coupling g can be determined in similar way to QED. Integrating out the

matter field produces a contribution which is exactly (4.18) but multiplied by the group theory factor

C(r) where C(r)δab = TrT aT b, for example, for gauge group SU(N), for the adjoint representation

r = G, C(G) = N and C(fund) = 1
2
. However, the new feature is that there are contributions from the

gauge field itself because of its self-interactions. The relevant graphs are4

The resulting expression for the one-loop beta-function including the contributions from a series of

scalar fields, as above, and, in addition, Weyl fermions in representations rf , all with a mass m < µ, is

µ
dg

dµ
= − g3

(4π)2

(11

3
C(G)− 1

3

∑

scalars f

C(rf)−
2

3

∑

fermions f

C(rf)
)

. (4.27)

For example, for G = SU(N) and Ns scalars and Nf Weyl fermions in the fundamental N representation

plus the anti-fundamental N̄

µ
dg

dµ
= − g3

(4π)2

(11

3
N − 1

3
Ns −

2

3
Nf

)

. (4.28)

While if all fields are in the adjoint representation

µ
dg

dµ
= − Ng3

(4π)2

(11

3
− 1

3
Ns −

2

3
Nf

)

. (4.29)
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What is remarkable is that the contribution from the self interactions of the gauge field have an

opposite sign from the matter fields. If we write the one-loop beta function as µdg/dµ = −bg3 then

the resulting behaviour depends crucially on the sign of b. Solving the one-loop beta function equation

µdg/dµ = −bg3 gives

g(µ)2 =
1

C + b log µ
=

1

b log(µ/Λ)
, (4.30)

where we have written the integration constant as a dimensionful parameter Λ. Once again we have

an example of dimensional transmutation where the dimensionless gauge coupling has turned into a

dimensionfull scale. When there is sufficient matter so that b < 0, the situation will be as in QED: we

must have µ < Λ and g(µ) will decrease with decreasing µ, the theory is IR free, and so the coupling

is marginally irrelevant at the Gaussian fixed point at g = 0 and apparently no continuum limit exists.

In this case, Λ is the position of the Landau pole in the UV as for φ4 theory.

On the contrary, as long as the amount of matter is not too large so that b > 0, we must have µ > Λ

so that the coupling g(µ) increases with decreasing µ. In this case the coupling is marginally relevant

at the Gaussian fixed point and a non-trivial interacting continuum limit of the theory exists since

there is a renormalized trajectory that flows out of the Gaussian fixed point. The situation is rather

different from scalar fields in d < 4 because the UV limit of the theory is non-interacting, a situation

known as asymptotic freedom. In this case, Λ signals the scale at which the coupling becomes large

and perturbation theory breaks down. It is at these scales that confinement sets in. It is important to

realize that Λ is a physically measurable scale.

The Higgs mechanism

There is another mechanism which affects the running of the gauge coupling. This is the phenomenon

of spontaneous symmetry breaking or the Higgs effect which is driven by VEVs for the scalar fields. In

general, a VEV φ0 will not be invariant under gauge transformations. In other words, we can split the

generators of the gauge group into 2 sets H ∪ B:

T a
ijφ

0
j = 0 a ∈ H , T a

ijφ
0
j 6= 0 a ∈ B . (4.31)

The first set are the unbroken symmetries which generate a subgroup H ⊂ G. The second set are the

broken symmetries. The gauge fields corresponding to the broken symmetries gain a mass which is

determined by the kinetic term of the scalar:

Dµφ
†Dµφ −→

∑

a,b∈B

(

φ0†T aT bφ0
)

Aa
µA

bµ . (4.32)

For example, consider a scalar field in the N of SU(N). Up to gauge transformation we can suppose

the VEV takes the form

φ0
i = vδi1 . (4.33)
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If we represent the gauge field as a traceless N ×N matrix, then

Aa
µT

a
ijφ

0
j = Aµijφ

0
j = vAµi1 . (4.34)

Hence, the components Aµi1 = A∗
µ1i gain a mass v and the gauge group is broken from SU(N) to

SU(N − 1). It should not be surprising that at the scale µ = v the beta function of the gauge coupling

changes discontinuously (in a momentum independent scheme like MS) from that appropriate to a gauge

group G to one associated to a gauge group H .

UV Completion

We have seen that an essential requirement in order to take a continuum limit in a
QFT is that the theory in the IR lies on a renormalized trajectory, that is the RG
flow out of some UV fixed point. For two theories that we have met, φ4 scalar QFT
and QED, both in d = 4, there is no renormalized trajectory issuing from a fixed
point and so when we try to take the continuum limit there is a Landau pole: as
we run the RG backwards the coupling diverges to ∞ at some finite µ.

If this was the last word on continuum limits, then this would seem to be rather
disastrous for the standard model which includes QED and the Higgs scalars. How-
ever, we have already seen that as the RG scale passes a mass of particle into the
regime µ < m, the particle is essentially redundant as far as the physics is con-
cerned and in RG schemes like MS is actually removed by hand from the theory
(although it is important to remember that it leaves its mark in the form of irrele-
vant operators suppressed by powers of 1/m which in principle will leave observable
effects.) So in our theories with Landau poles, it may be that there is a good UV
completion which requires new particles and fields as we flow into the UV. For ex-
ample, QED, along with the other gauge interactions of the standard model with
group U(1)×SU(2)×SU(3) can be embedded in a larger group, the simplest being
SU(5). This is idea of grand unification. The SU(5) is then broken to the standard
model, including QED, by certain Higgs fields at certain energy scales such that
the standard model is the effective theory at low energies. However, in the UV the
theory is asymptotically free and so there exists a continuum limit (at least if we
ignore the Landau pole in the Higgs sector). The Higgs sector of the standard model
can also be given a consistent UV completion in models where it is the bound state
of fermions, for example.

Notes

1 Of course this will only be true if the cut-off scheme itself does not break gauge invariance.
For instance the sharp momentum cut-off is not consistent with gauge invariance because gauge
transformations mix up modes of different frequency, i.e. they do not preserve the split (2.7).

2 A Weyl fermion ψα, α = 1, 2 and α̇ = 1, 2, is a 2-component complex Grassmann quantity. In
Minkowski space its conjugate is denoted ψ̄α̇ = (ψα)†. In Euclidean space ψα and ψ̄α̇ are treated
as independent real objects. A Weyl fermion can also be represented in 4-component Dirac fermion
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language as a Majorana fermion Ψ =

(

ψα

ψ̄α̇

)

. A Dirac fermion, like the electron-positron field is

then made up of two Weyl fermions Ψ =

(

ψα

λ̄α̇

)

. In this 2-component notation the σ matrices can

be taken as
σµ

αα̇ =
(

1, σi
)

, σ̄µα̇α =
(

1,−σi
)

. (4.35)

3 In general if we have a set of complex scalars and Weyl fermions with integer charges qi meaning
that covariant derivatives involve Dµ = ∂µ + ieqiAµ, or ∂µ + iqiAµ after the rescaling Aµ → Aµ/e,
then the one-loop beta function in the MS scheme is

µ
de

dµ
=

1

48π2

∑

scalars

q2i +
1

12π2

∑

fermions

q2i . (4.36)

4 Depending on how the gauge is fixed, there will usually be a contribution from the gauge-fixing
ghost fields. The complete calculation can be found in Peskin and Schroeder p533 onwards.
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5 RG and Supersymmetry

QFTs with supersymmetry (SUSY) have some remarkable RG properties. From our point-of-view, one

can prove the existence of many non-trivial fixed points of the RG. Our discussion of SUSY theories

will be geared towards describing some of these fixed points and the associated RG flows and so will

be very brief about other aspects of SUSY theories. In particular, we shall use component fields rather

than introduce the whole paraphernalia of superspace and superfields and will be rather brief when

discussing the global R-symmetries of SUSY theories.

In a SUSY theory, fields are collected into SUSY multiplets. In d = 4 (which we will stick to from

now on) there are 2 basic multiplets: (i) a chiral multiplet consisting of a complex scalar, a Weyl fermion

and a complex auxiliary scalar field

Φ = (φ, ψα, F ) , (5.1)

(ii) a vector multiplet consisting of a gauge field, an adjoint-valued Weyl fermion and an adjoint-valued

auxiliary real scalar field

V = (Aµ, λα, D) . (5.2)

Theories of chiral multiplets: Wess-Zumino models

Wess-Zumino models are constructed from chiral multiplets Φi with a basic SUSY kinetic term of

the form1

Lkin = |∂µφi|2 + iψ̄iσ̄
µ∂µψi + |Fi|2 , (5.3)

note that the auxiliary fields Fi has trivial kinetic terms and their rôle in the theory is to simplify the

SUSY structure. The interactions are determined by a function W (φi), the superpotential,

Lint = Fi
∂W

∂φi
+

∂2W

∂φi∂φj
ψiψj + c.c. (5.4)

(c.c.=complex conjugate.) Notice that the Fi can trivially be “integrated out” by their equation-of-

motion

Fi =
∂W (φ∗)

∂φ∗
i

, (5.5)

to give a net potential on the scalar fields:

V (φi, φ
∗
i ) =

∑

i

∣

∣

∣

∣

∂W

∂φi

∣

∣

∣

∣

2

. (5.6)

The theory is invariant under the infinitesimal SUSY transformations Grassmann parameter ξα

δφi = ξψi ,

δψi = iσµξ̄∂µφi + ξFi ,

δFi = iξ̄σ̄µ∂µψi .

(5.7)
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There is an important distinction between the kinetic and interaction terms: Lkin are “D terms”,

meaning functions of the fields and their complex conjugates, while Lint are “F terms”, consisting of

the sum of a part which is holomorphic in the fields and the couplings and the complex conjugate

term which has all quantities replaced by the corresponding anti-holomorphic ones. In particular, the

superpotential W (φi) is a holomorphic function of the φi and also the couplings gn, i.e. W (φi) does not

depend on φ∗
i or g∗n. It is this underlying holomorphic structure of F-terms that plays the pivotal rôle

in proving exact RG statements in SUSY theories.

For example, for a φ4 type model the superpotential has the form

W (φ) =
1

2
mφ2 +

1

3
λφ3 , (5.8)

and note that the coupling m and λ are in general complex. In this case, after integrating out the

auxiliary fields Fi, the interaction terms are in this case

Lint = −
∣

∣mφ + λφ2
∣

∣

2 −mψψ −m∗ψ̄ψ̄ − 2λφψψ − 2λφ∗ψ̄ψ̄ . (5.9)

The final 2 terms here are Yukawa interactions between the fermions and scalars.

Renormalization of the F-terms

From the point-of-view of RG, the key fact is that couplings in the superpotential do not change

when we change the RG scale µ.2 This does not mean that the couplings in the superpotential do not

have any RG flow because there can be be non-trivial wavefunction renormalization, in addition to the

canonical scaling coming from the fact that we always think of RG flow of dimensionless couplings. In

fact, for a term W ∼ µ3−nλφn, the RG equation becomes

W (Z(µ)1/2φ;µ, λ(µ)) = W (Z(µ′)1/2φ;µ′, λ(µ′)) (5.10)

and so under an RG flow

µ3−nZ(µ)−n/2λ(µ) = µ′3−nZ(µ′)−n/2λ(µ′) , (5.11)

from which we extract the beta-function3

µ
dλ

dµ
= (−3 + n+ nγ)λ , (5.12)

where γ is the common anomalous dimension of all fields in the chiral multiplet (SUSY ensures that all

fields in a multiplet have the same wavefunction renormalization). Another way to state this, is that

the scaling dimension of the composite operator φn is just equal to the sum of the scaling dimension of

the individual operators φ:4

∆φn = n(1 + γ) = n∆φ . (5.13)

On the contrary, SUSY does not constraint the running of D-term couplings.
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The fact that the superpotential is only renormalized by wavefunction renormalization has a very

important application. The vacua of a theory are determined by minimizing the effective potential. This

latter quantity is, as argued previously, the potential in the Wilsonian effective action in the limit that

µ→ 0. In a SUSY theory, the potential, is given by (5.6) and so the absolute minima of V correspond

to the critical points of the superpotential, or “F-flatness” condition

F ∗
i = −∂W (φj)

∂φi

= 0 . (5.14)

Such vacua can be shown to preserve SUSY, whereas if the minima have V > 0 then SUSY is spon-

taneously broken. Now we come to the important bit, as we decrease the cut-off µ → 0, if we have a

solution φi of (5.14) at the original cut-off, then we still have a solution, differing only by wavefunction

renormalization, Zi(µ)1/2φi.

For example, the model with a bare superpotential (5.8) has SUSY vacua at φ = 0 and φ = −m/λ
and by the argument above these vacua will persist, only shifted by wavefunction renormalization, once

the quantum corrections are taken into account. It is also possible to cook-up models which do not

have any SUSY vacua.

Vacuum Moduli Spaces

In a non-SUSY QFT, vacua of the theory are generally discrete points because
RG flow generically lifts any flat directions of the potential. In a SUSY theory,
however, RG flow cannot lift a degenerate space of SUSY vacua. So in many
cases SUSY theories have non-trivial Vacuum Moduli Spaces M whose points are
labelled by the VEVs of the scalar fields in the theory. The space M is in many
cases not a manifold rather it is a series of manifolds, or “branches”, often joined
along subspaces of lower dimension.

As an example consider a model with 3 chiral multiplets X, Y and Z with a
superpotential W = λxyz. The SUSY vacua are determined by the equations
xy = yz = zx = 0 and so there are 3 branches (i) y = z = 0, x arbitrary, (ii)
z = x = 0, y arbitrary, and (iii) x = y = 0, z arbitrary. Here, x, etc, is short for
the VEV of the scalar field component of X. These three branches are joined at the
point x = y = z = 0. The structure of M is schematically
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SUSY gauge theories

A SUSY gauge theory is constructed from a kinetic term which, unlike the chiral multiplet, is an

F-term

Lkin(V ) =
( 1

2g2
+

θ

16π2i

)

L (V ) + c.c. ,

L (V ) = −1

4
F a

µνF
aµν +

i

8
ǫµνρσF

aµνF aρσ − iλ̄aσ̄µDµλ
a +

1

2
Da2 .

(5.15)

Notice that the gauge coupling is naturally combined with the θ angle5 to form a holomorphic coupling

which is conventionally written as

τ =
4πi

g2
+

θ

2π
. (5.16)

If we couple a vector superfield to a chiral superfield transforming in some representation r, with

generators T a
ij , of the gauge group, then SUSY requires minimal coupling: all derivatives are replaced

by covariant derivatives. In addition, there are the extra interactions

Lint = i
√

2T a
ij

(

φ∗
iψjλ

a − φiψ̄jλ̄
a
)

+DaT a
ijφ

∗
iφj . (5.17)

Notice that once the auxiliary fields Da and Fi are integrated-out, the scalar fields have a potential

V (φi, φ
∗
i ) =

∣

∣

∣

∣

∂W

∂φi

∣

∣

∣

∣

2

+
1

2

∑

a

(

φ∗
iT

a
ijφj

)2
, (5.18)

which generalizes (5.6). Henceforth, we will think of φ as a vector and leave the indices implicit. If we

have several matter fields transforming in representations rf then we will denote them with a “flavour

index” Φf . For instance, SUSY QCD with gauge group SU(N) is defined as the theory with Nf chiral

multiplets in the N representation, conventionally denoted Qf = (qf , ψf , Ff), and Nf chiral multiplets

in the N̄ representation, denoted Q̃f = (q̃f , ψ̃f , F̃f ).

Since the gauge coupling is a secretly a holomorphic quantity one wonders whether it has any

non-trivial renormalization. The reason is that the perturbative expansion is in g and not τ , but renor-

malization must preserve the holomorphic structure hence there should be no RG flow of τ and hence

g. Actually, this argument is a bit too quick, because one-loop running is consistent with holomorphy,

since for the theory without matter fields, using (4.27) with one fermion in the adjoint representation,

we have

µ
dg

dµ
= − 3

16π2
C(G)g3 =⇒ µ

dτ

dµ
=

3i

2π
C(G) . (5.19)

which is consistent because θ does not run. So the beta function of g is exact at the one-loop level!

The re-scaling anomaly

Once we add chiral multiplets coupled to the vector multiplet the beta function of g will get non-

trivial contributions for two reasons. The first effect is simple: the one-loop coefficient receives additional
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contributions from the fields of the chiral multiplets. From (4.27), and taking account the field content

of the vector and chiral multiplets, we simply have to perform the replacement

3C(G) −→ 3C(G)−
∑

f

C(rf) . (5.20)

The second contribution is more subtle. As we have learned under the RG transformation, as the cut-off

µ is lowered the kinetic terms changes by the wavefunction renormalization factor:

|∂µφ|2 −→ Z|∂µφ|2 . (5.21)

At this point, we have to perform the re-scaling φ → Z−1/2φ in order to return the kinetic term to its

canonical form. In principle, when we perform this re-scaling we should take into account the Jacobian

coming from the measure of the functional integral. With a sharp momentum cut-off on the modes this

gives a Jacobian

Jac = Z# degrees-of-freedom = exp
[

log Z

∫

ddx

∫

|p|≤µ

ddp

(2π)d

]

= exp
[

logZ µd VolSd−1
∫

ddx

(2π)d

]

. (5.22)

This is divergent but still just a constant factor that we can safely ignore. However, when φ is coupled

non-trivially to a gauge field, the Jacobian will depend on the background gauge field. The reason

is in order to preserve gauge invariance the cut-off must somehow be compatible with the covariant

derivative Dµ = ∂µ + iAµ and this means that the whole cut-off procedure must involve the background

gauge field in a non-trivial way. The proper way to do this is to put the cut-off µ2 on the eigenvalues

of the covariant Laplace equation (in Euclidean space)

−D2
µφ = λφ . (5.23)

It is technically quite complicated to calculate the Jacobian this way; however, we can avoid this by

making an intelligent use of the chiral anomaly.

The Chiral Anomaly

A chiral transformation takes

ψ → eiαψ , ψ̄ → e−iαψ̄ . (5.24)

The action is clearly invariant under this transformation, however, the regularized
measure [dψ][dψ̄] is not. The point is that the cut-off procedure breaks the symmetry
in the presence of a background gauge field. Under the transformation the fermion
part of the measure picks up a non-trivial Jacobian

[eiαdψ][e−iαdψ̄] = [dψ][dψ̄] exp
[

− iαC(r)

32π2

∫

d4x ǫµνρσF
aµνF aρσ

]

. (5.25)

What is remarkable about the chiral anomaly is that this result is exact to all orders
in perturbation theory.
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We can now use the chiral anomaly to calculate the re-scaling anomaly, or Jacobian, for a chiral

multiplet by exploiting holomorphy and SUSY. If one compares the right-hand side of (5.25) with the

SUSY kinetic term (5.15), taking into account that the holomorphic and anti-holomorphic contributions

to Lkin are separately invariant under SUSY, it is clear that (5.25) can be written in a way manifestly

invariant under SUSY; namely

Jac = exp
{αC(r)

8π2

∫

d4x
[

L (V )−L
∗(V )

]}

= exp
{

− iC(r)

8π2

∫

d4x
[

(

iαL (V )
)

+
(

iαL (V )
)∗

]}

.

(5.26)

Most of the terms here cancel to leave only the right-hand side of (5.25). However, we can now exploit

holomorphy to generalize the chiral transformation to an arbitrary holomorphic re-scaling of the whole

chiral multiplet:

φ→ Z−1/2φ , ψ → Z−1/2ψ , F → Z−1/2F . (5.27)

The resulting Jacobian is then simply the right-hand side of (5.26) with eiα replaced by Z−1/2:

Jac = exp
{ iC(r)

16π2

∫

d4x
[

(

logZ L (V )
)

+
(

logZ L (V )
)∗

]}

. (5.28)

Now this result is also valid, by analytic continuation, for a field wavefunction renormalization for

which Z is real. Hence, we can calculate the effect of wavefunction renormalization on the running of

the gauge coupling. Under an infinitesimal RG transformation Z = 1− 2γδµ/µ and so the Jacobian is

of the form

Jac = exp
{

− iC(r)γ

8π2

∫

d4x
[

L (V ) + L
∗(V )

]δµ

µ

}

(5.29)

which corresponds to an additional contribution to the flow of the gauge coupling of

δ
( 1

g2

)

=
C(r)γ

4π2
· δµ
µ
,

µ
dg

dµ

∣

∣

∣

additional
= − g3

8π2
C(r)γ .

(5.30)

Hence, the exact beta function for a model with a series of chiral multiplets in representations rf of the

gauge group is

µ
dg

dµ
= − g3

16π2

(

3C(G)−
∑

f

C(rf )(1− 2γf)
)

. (5.31)

The NSVZ exact beta-function

The above is an exact result valid for the coupling that appears as 1/g2 in front of the gauge kinetic

term. We would think that this is the same as the canonical gauge coupling gc, the one that appears in

the covariant derivatives Dµ = ∂µ + igcAµ because one can simply re-scale the gauge field Aµ → gcAµ

(and all the other fields of the vector multiplet). But we have just learnt our lesson: these re-scalings

cannot be done willy-nilly since one can expect a non-trivial Jacobian from measure and this means
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that g 6= gc. Unfortunately the trick that worked for a chiral multiplet does not work in a simple way

here since the chiral rotation of the gluino cannot be complexified to give the re-scaling anomaly of the

vector multiplet, and so we just quote the result

Jac = exp
{ iC(G)g2

16π2
log gc

∫

d4x
(

L (V ) + L (V )∗
) δµ

µ

}

. (5.32)

Notice that it has the same form as an adjoint-valued chiral multiplet but with the opposite sign and

with Z = g2
c . The condition that the kinetic term, after the re-scaling, has no coupling in front of the

kinetic term gives the condition

g2
c

( 1

g2
− C(G)

4π2
log gc

)

= 1 (5.33)

which is the exact relation between the two definitions of the gauge coupling g and gc. It follows that

the beta function of the canonical coupling is

µ
dgc

dµ
= µ

dgc

dµ
= µ

dg

dµ
· g

3
c

g3
· 1

1− C(G)g2
c/8π

2

= − g3
c

16π2
·
3C(G)−

∑

f C(rf)(1− 2γf)

1− C(G)g2
c/8π

2
.

(5.34)

This is the famous Novikov-Shifman-Vainshtein-Zahakarov (NSVZ) beta function for SUSY gauge the-

ories.

Vacuum structure

Searching for the vacua of a SUSY gauge theory is more complicated than for a Wess-Zumino model.

The potential of a SUSY gauge theory (5.18) includes a contribution from the gauge sector which arises

once the D field is integrated out. Clearly, as in the Wess-Zumino case, it is bounded below by 0 and

for a SUSY vacuum we need V = 0 and so the conditions are

∂W

∂φf
= 0 ,

∑

f

φ†
fT

aφf = 0 ,
(5.35)

known as the F- and D-term equations, which have to solved moduli gauge transformations. Such

minima correspond to vacua of the theory which preserve SUSY.

To see how this works, consider SUSY QED with chiral fields Q1 and Q2 of charge +1 and Q̃1 and

Q̃2 of charge −1. Furthermore, let us suppose that the theory has no superpotential. Hence, only the

D-term equation is non-trivial:

|q1|2 + |q2|2 − |q̃1|2 − |q̃2|2 = 0 . (5.36)

One way to solve this is to use gauge transformations to make q1 real and then the D-term equation

determines, say, q1. This breaks down when q1 = 0, but then we can use q2 instead, etc. All-in-all,

modulo gauge transformation, we have a 3-complex dimensional space of solutions which defines the
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vacuum moduli space M. At any point in M, besides the origin, the VEV of the scalar fields breaks

the gauge group and the photon gains a mass by the Higgs mechanism.

It is an important theorem, that any solution of the F- and D-term equations moduli gauge

transformations is equivalent to a solution of the F-term equations alone modulo complexified gauge

transformations.6 This theorem is useful because it survives quantum corrections. In particular, al-

though the D-terms are renormalized non-trivially, we can ignore them if we are only interested in the

SUSY vacua of theory. In the present case, complexifed gauge transformations acts as

q1 → λq1 , q2 → λq2 , q̃1 → λ−1q̃1 , q̃2 → λ−1q̃2 . (5.37)

So for the example above, which has no F-term conditions, we can find M by finding a set if

coordinates which are gauge invariant in a complexified sense: in this case z1 = q1q̃1, z2 = q1q̃2,

z3 = q2q̃1 and z4 = q2q̃2. However, these coordinates are not all independent, a short-coming that can

be remedied by imposing the condition

z1z4 = z2z3 . (5.38)

So the vacuum moduli space is an example of a complex variety defined by the above condition in C4.

In this case the complex variety is actually a conifold rather than a manifold since it is singular at

zi = 0 where the U(1) gauge symmetry is restored.

Notes

1 The kinetic term can be generalized to all the terms with two derivatives:

Lkin =
∂2K

∂φi∂φ∗j
∂µφi∂

µφ∗j + terms involving (ψ,F ) , (5.39)

determined by a real function, K(φ, φ∗), the Kähler potential.

2 The simple proof of this fact is to think of the holomorphic and anti-holomorphic fields and
couplings as being temporarily independent. Then when we integrate out modes as we decrease µ
the flow of the holomorphic couplings cannot depend on the anti-holomorphic couplings and so we
can set the latter to 0. In this limit, both the scalar and fermion propagator have no components
which can joint the legs of holomorphic fields. Hence, the graphs that contribute to the holomorphic
fields simply vanish.

3 The 3 here is the canonical dimension of W and γ is the anomalous dimension of each field of the
chiral multiplet which must be equal by SUSY. The generalization for a term W ∼ µ3−pλφi1 · · · φin

is

µ
dλ

dµ
=

(

− 3 + p+

n
∑

i=1

γi

)

λ . (5.40)
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4 It is a key aspect of RG that scaling dimension of a general composite operator O = O1 · · · Op is
not usually the sum ∆O 6= ∆O1

+ · · ·+∆Op . For instance, for φ4 theory around the Wilson-Fischer
fixed point ∆φ4 6= 2∆φ2 .

5 The θ angle multiplies a term

1

64π2

∫

d4x ǫµνρσF
aµνF aρσ , (5.41)

in the action. This integral is topological, in the sense that for any smooth gauge configuration it
is equal to 2πk, where k is an integer: the 2nd Chern Class of the gauge field. Furthermore, the
theta term does not contribute to the classical equations-of-motion. In the quantum theory which
involves the Feynman sum over configurations, θ is another coupling in the theory.

6 We present the proof in the abelian case G = U(1). Suppose we have a solution of the F-term
equations qf (with charges ef ). The key point is that since the superpotential only depends on
the holomorphic fields and not the anti-holomorphic ones, it is actually invariant not just under
gauge transformations qf → eief θqf but also complexified gauge transformations qf → ηef qf , for
arbitrary complex η. On the other hand, the D-term

∑

f

ef |qf |2 (5.42)

is not invariant under this complexified transformation. The strategy is then to use the complexified
gauge transformation with η real, to find a solution of the D-term equation: q̌f = ηef qf :

∑

f

ef |q̌f |2 =
∑

f

efη
2ef |qf |2 =

1

2

∂

∂η

∑

f

η2ef |qf |2 = 0 . (5.43)

It is always possible to find an η which does this because for the function
∑

f η
2ef |qf |2 either (i)

ef all have the same sign, in which case η → 0 or ∞ depending on the sign of the charges, or (ii) if
some of the ef have opposite sign

∑

f η
2ef |qf |2 goes to ∞ for η → 0,∞, and hence has a minimum

as a function of η for some finite η > 0.

The generalization to the non-abelian case is reasonably straightforward: see Wess and Bagger
p.57-58.
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6 More RG Structure of SUSY Theories and N = 4

RG fixed points

The next issue we will address in our RG investigation of SUSY theories will be to show that there

are many non-trivial fixed points of the RG in d = 4 supersymmetric gauge theories. These fixed point

have a supersymmetric extension of conformal invariance and are consequently super-conformal field

theories (SCFTs). The existence of these fixed points (actually manifolds) rests on the special properties

that we have established for the renormalization of the superpotential (5.40) and for the gauge coupling

(5.31) or (5.34).

First of all, consider a Wess-Zumino model (so only chiral multiplets). In that case, one can prove

that all the anomalous dimensions γi ≥ 0 (with equality for a free theory). Since, in order to have an

interacting theory, we need terms cubic in the superpotential, it follows immediately that there cannot

be non-trivial fixed points of RG:

µ
dλ

dµ
= (−3 + n+ nγ)λ > 0 . (6.1)

Now we add vector multiplets and take the chiral multiplets in representations rf of the gauge group.

In that case, there is no positivity conditions on the anomalous dimensions of the chiral multiplets. In

order to have a fixed point, for each coupling in the superpotential ∼ λφf1
· · ·φfp

, we need from (5.40)

p
∑

i=1

γfi
= 3− p (6.2)

and from (5.31)

3C(G)−
∑

f

C(rf)
(

1− 2γf

)

= 0 . (6.3)

If there are n such cubic couplings λi in the superpotential then it appears that there are n+1 equations

for n + 1 unknowns {λi, g}. Generically, therefore, if solutions exist they will be discrete and unlikely

to be within the reach of perturbation theory. However, there are special situations when the set of

n+ 1 equations are degenerate in which case there are spaces of fixed points which can extend into the

perturbative regime.

For example, suppose there are 3 chiral multiplets in the adjoint representation with a superpotential

which has sufficient symmetry to infer that all the anomalous dimensions are equal γf ≡ γ. In this case,

(6.2) and (6.3) are satisfied if the superpotential is cubic in the fields and if the anomalous dimension

γ(λi, g) = 0 (6.4)

which is a single condition on n+ 1 couplings. Such theories are very special because they are actually

finite.
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Finite Theories

A theory is finite if there are no UV divergences in perturbation theory. In a
SUSY theory, this means that the anomalous dimensions of all the chiral opera-
tors vanish and the beta function of the gauge coupling vanishes. The conditions are:

(i) γf = 0.

(ii) The superpotential must be cubic in the fields, in order that the RG flow of the
couplings in the superpotential vanish: see (5.40).

(iii) 3C(G) =
∑

f C(rf) in order that the RG flow of the gauge coupling vanishes.

Notice that not every finite theory is a CFT since conformal invariance could be
broken by VEVs for scalar fields if there is a moduli space of vacua. However, in
such cases conformal invariance would be recovered in the UV. Neither is every
conformal field theory a finite theory since the condition to be at a fixed point does
not require the anomalous dimensions of fields to vanish.

For example, if the gauge group is G = SU(N), there are 3 gauge invariant couplings one can write

in the superpotential for 3 adjoint-valued fields (N×N traceless Hermitian matrices) which have enough

symmetry to imply that all the anomalous dimensions are equal:

W = tr
(

λ1φ1φ2φ3 + λ2φ1φ3φ2 +
λ3

3

3
∑

f=1

φ3
f

)

. (6.5)

Of course we need to check that the condition γ(λ1, λ2, λ3, g) = 0 actually has solutions. The key to

proving this is to establish that solutions exist in perturbation theory and then by continuity one can

expect that solutions exist also at strong coupling. To one-loop it can be shown that the anomalous

dimension is1

γ =
C(G)

64π2

(

∑

f

|λf |2 − 4g2
)

. (6.6)

We won’t give the proof of this, but it is easy to see the diagrams that contribute. For example, for the

anomalous dimension of the scalar field, the following 1-loop graphs contribute (plus graphs involving

the ghosts which we do not show)
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So γ receives positive contributions from the chiral multiplets and negative contributions from the vector

multiplet. To simplify the discussion suppose that all the couplings λf ∼ λ. In this case, there is a

RG-fixed line at weak coupling when λ ∼ g. RG flow in the (λ, g) subspace is of the form

where the dotted line is a line of fixed points. So the couplings away from the fixed line in the (λ, g)

subspace are irrelevant since the RG flow is into the fixed line. One would expect that the fixed line

extends by continuity into the region of strong coupling as well.

Once we take all the couplings into account, there is actually a 6-dimensional space of SCFTs (this

comes from the complex λf , f = 1, 2, 3 and the gauge coupling subject to one condition).

The maximally SUSY gauge theory

A special class of these finite theories corresponds to taking a SUSY gauge theory with 3 chiral

multiplets in the adjoint representation with a superpotential of the form (6.5) with λ1 = −λ2 =
√

2g

and λ3 = 0, i.e.1

W =
√

2gTrφ1[φ2, φ3] . (6.7)

Such theories have extended N = 4 SUSY, the maximal amount of the SUSY in d = 4 for theories which

do not contain gravity.

The theory has a large global SU(4) symmetry under which the 3 fermions from the chiral multiplets

and the gluino transform as the 4, while the 3 complex scalars φi can be written as 6 real scalars that

transform in the antisymmetric 6 (or the vector of SO(6) ≃ SU(4)). Such symmetries of SUSY theories

for which the fermions and scalars transform differently are known as R-symmetries. It is no accident

that SO(6) is the isometry group of an S5: see below. For later use, the potential of the theory has the

form

V (φi, φ
∗) = g2

3
∑

ij=1

Tr
(

φiφjφ
∗
iφ

∗
j − φiφjφ

∗
jφ

∗
i

)

. (6.8)

N = 4 are infinitely fascinating due to the amazing fact that they are equivalent to Type IIB string

theory in 10-d spacetime on an AdS5 × S5 background. The fact that what appears to be a humble
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4d gauge theory can encode all the rich dynamics of a ten-dimensional (graviational) string theory is, I

believe, one of the most amazing results in theoretical physics. We won’t give a complete discussion of

the AdS/CFT correspondence here since it will be discussed at length in other lectures at this school.

However, since RG plays an important rôle, I will set the scene.

The gauge theory has 2 parameters g andN . In the dual string picture the string coupling gs = g2/4π

while the radius of the geometry in string units is
√

g2N . This motivates the ’t Hooft limit in which

N → ∞ with λ = g2N fixed. This is the so-called planar limit on the gauge theory side since only

planar Feynman graphs survive, while the string side should correspond to free strings moving in an

AdS5 × S5 geometry. Perturbation theory on the gauge theory side requires λ small which is the limit

on the string side where the geometry is highly curved. While strong coupling, large λ, in the gauge

theory corresponds to strings moving on a weakly curved background.

Part of the “dictionary” is that single trace composite operators of the form

O(x) = tr
(

a1a2 · · ·aL

)

, (6.9)

where the ai are one of the fundamental fields (where Aµ appears through Dµ in order to be gauge

invariant) correspond to single string states. Moreover the scaling dimension of the operator equals the

energy of the associated string state:

Estring = ∆O . (6.10)

So perturbative calculations of the anomalous dimensions of operators in the gauge theory tells us

directly about the spectrum of strings moving in a highly curved AdS × S5 geometry!

There have been some amazing developments in calculating these anomalous dimensions in the

gauge theory and matching them to the energies of string states. Here, we will consider the problem of

calculating the anomalous dimensions of single trace operators made up of just the two “letters” φ1 and

φ2 to one-loop in planar perturbation theory (perturbation theory in λ with N = ∞ which suppresses

completely non-planar contributions):

O = tr
(

φ1φ1φ2 · · ·
)

(6.11)

If the operator has length L then the classical dimension is simply dO = L, so

∆O = L+ λ∆1 + λ2∆2 + · · · . (6.12)

The problem is that the operators Oi with a given number J1 of φ1 and J2 of φ2, with J1 + J2 = L, all

mix under RG and so we have the problem of diagonalizing a matrix.

One way to calculate the anomalous dimension of the class of such operators with fixed J1 and J2,
{

Op

}

, is to add them to the action

S −→ S +

∫

ddx
∑

p

µ4−LgpOp(x) (6.13)
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and then look at the flow of the gp in the effective potential to linear order in gp. We follow exactly

the same background field method that we used earlier and treat the operator terms as new vertices in

the action with couplings gp. The flow of the couplings gp can be deduced by writing down Feynman

graphs with J1 external φ1 and J2 external φ2 lines with fluctuating fields on internal lines.

Since the anomalous dimension follows from

µ
dgp

dµ
= (L− 4)gp + γpqgq + · · · , (6.14)

we only need look at graphs which use the vertices gp once. At one-loop level, to begin with we have

the graphs

The first graph has to be summed over all neighbouring pairs (but not non-neighbouring pairs, since

these would be non-planar graphs suppressed by powers of 1/N), while the others are to summed over

all L legs. The third involves a fermion loop and the fourth a scalar loop. The important point about

these graphs is the they don’t change the flavour of the legs of the vertex. In other words, whatever

their contribution to the anomalous dimension is proportional to the identity in the space of (J1, J2)

operators. We shall shortly argue that these contributions, which we write C11, actually vanish, so

C1 = 0.

The remaining graphs involve using the quartic coupling in the scalar potential to tie two adjacent

legs together. The potential (6.8) contains the terms

V = 2g2tr
(

φ1φ2φ
∗
1φ

∗
2 − φ1φ2φ

∗
2φ

∗
1 − φ2φ1φ

∗
1φ

∗
2 + φ2φ1φ

∗
2φ

∗
1

)

+ · · · , (6.15)

and so we see immediately that these interactions can be used to form two additional one-loop graphs

when two adjacent legs are different, either φ1φ2, as shown, or φ2φ1
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The absolute contribution is simple to calculate, but even without explicit calculation it is easy to see

from the potential that these contributions come with a relative −1.

Putting all this together, we have found that the two sets of one-loop contributions to the anomalous

dimension “operator” can be written neatly as

γ =

L
∑

ℓ=1

{

C11ℓ + C2

(

1ℓ − P ℓ

)

}

(6.16)

where P ℓ permutes the ℓth and ℓ+ 1th letters in the word and 1ℓ is the identity:

P ℓ tr
(

· · ·φiℓφiℓ+1
· · ·

)

= tr
(

· · ·φiℓ+1φiℓ · · ·
)

(6.17)

and we identify L+ 1 ≡ 1 due to the cyclicity of the trace.

Now we can pin down C1 by using the fact that the operator trφL
1 is special because it is a so-called

BPS operator and is consequently protected against quantum corrections; hence, ∆ = L to all orders

in the perturbative expansion. This means that C1 = 0 a simple computation gives

C2 =
λ

4π2
. (6.18)

Rather interestingly the resulting anomalous dimension operator γ up to some overall scaling is

identical to the Hamiltonian of the so-called XXX spin chain, a quantum mechanical model of L spins

taking values | ↑〉 ≡ φ1 and | ↓〉 ≡ φ2. Each operator of fixed length corresponds to a state of the spin

chain:

tr
(

φ1φ1φ2φ1φ2φ2φ1

)

←→ | ↑↑↓↑↓↓↑〉 . (6.19)

The problem of finding the anomalous dimensions and hence the spectrum of string states then is

identical to the problem of finding the eigenstates of the spin chain, a problem that was solved by Bethe

in 1931 by means of what we now call the Bethe Ansatz which reflects the fact that the problem is in

the special class of integrable system. This observation is just the beginning of the fascinating story of

N = 4, integrability and the AdS/CFT correspondence.

Notes
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1 The coupling here and in the following is generally the canonical gauge coupling, however, we
won’t distinguish the g and gc for now on.

2 F is also complex, while D is Hermitian and for the fermions ψ†
α = ψ̄α̇ and λ†α = λ̄α̇.

3 The perturbative expansion is really an expansion in g2N . In our limit, however, g2 ∼ 1/N2

and so higher orders in perturbation theory are suppressed by 1/N .
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