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!x → !x
′

= R(!θ) !x + !a

!a → constant vector

R(!θ) → 3 × 3 matrix depending on the three angles !θ

ψ("x) = ψ′("x) = e−i!a·!P e−i!θ· !J ψ("x)

!P → momentum !J → angular momentum

[Pi , Pj ] = 0 [Pi , Jj ] = iεijk Pk [Ji , Jj ] = iεijk Jk

Rotations and space translations

In quantum mechanics

Algebra
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[P ρ, Mνσ] = i(gρνPσ
− gρσP ν)

[Mµν , Mρσ] = −i(gµρMνσ + gνσMµρ
− gµσMνρ

− gνρMµσ)

Poincare group

Generators

[P ρ, Pσ] = 0

1

2
Σµν =⇒ spin part

Algebra



Coleman-Mandula proved a no-go theorem:

Poincare symmetry cannot be extended in a non-trivial 
way with commutators and bosonic generators

[

T a, T b
]

= i fabcT c [T a, P ρ] = 0

[

T a, T b
]

= i fabcT c

Extension by some internal symmetry

Way out: use fermionic generators and anticommutators



Q|bos〉 = |ferm〉 Q|ferm〉 = |bos〉

Q̄s =
(

Q† γ0)s

If Q is a fermionic (Grassmann odd) generator

Q changes the statistic of states

Take

The SUSY algebra

[Qr, P
µ] = 0

[Qr, M
µν ] =

1

2
Σµν

rs Qs

{Qr, Q̄s} = 2 γµ

rs Pµ

Qr
Grassmann odd spin-1/2 Majorana spinor

Haag-Lopuszanski-Sohnius

SUSY is a square root of a translation

Σµν =
i

2
[γµ, γν ]



Consequences of SUSY

Qr |b〉 = |f〉 |b〉 → bosonic |f〉 → fermionic

PµP
µ |b〉 = m

2

b |b〉 PµPµ |f〉 = m2

f |f〉

mb = mf

[Qr, PµPµ ] = 0From the algebra

Consider two states connected by SUSY

If

Then:

Bosons and fermions in the same supermultiplet 
must have the same mass
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The hamiltonian H = P0 is:

For any state |λ〉 we have:
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〈λ|H |λ〉 ≥ 0

From the basic anticommutator 

It follows that

In a SUSY theory the energy of any state is non-negative



Q |Ω〉 = Q† |Ω〉 = 0

For the vacuum state |Ω〉:

If SUSY is not broken

The energy of the vacuum state is 
zero if SUSY is unbroken



(−1)F |bos〉 = |bos〉 (−1)F |ferm〉 = −|ferm〉

(−1)F anticommutes with the SUSY generators

{ (−1)F , Qr } = 0

Define the fermion number operator F as:

F is even (odd) for bosonic (fermionic) states

Tr
[

(−1)F {Qr, Q̄s}
]

= 0 Tr
[

(−1)F

]

= 0

Taking the trace in a finite-dimensional representation of SUSY:

In a supermultiplet there is an equal 
number of bosons and fermions



The fermion-boson degeneracy is not observed in Nature!

SUSY must be spontaneously broken

Typical names of SUSY partners

fermion

electron
photon

sfermion

selectron
photino

gluon

gauge boson

Higgs 

gluino

gaugino
Higgsino



Reasons to study SUSY

Phenomenological reasons

SUSY makes the standard model an its extensions more 
stable under radiative corrections due to fermion-boson 
cancellation in loops

It provides a solution of the hierachy problem
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Figure 4. Running of gauge coupling constants in the Standard Model and in the MSSM.

group equations are given as
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The important aspect of these equations is that the gauge coupling con-
stants push down the Yukawa coupling constants at higher energies, while
the Yukawa couplings push them up. This interplay, together with a large top
Yukawa coupling, allows the possibility that the Yukawa couplings may also
unify at the same energy scale where the gauge coupling constants appear to
unify (Fig. 5). It turned out that the actual situation is much more relaxed
than what this plot suggests. This is because there is a significant correction
to mb at tanβ >∼ 10 when the superparticles are integrated out 45.

6.3 Soft Parameters

Since we do not know any of the soft parameters at this point, we cannot use
the renormalization-group equations to probe physics at high energy scales.
On the other hand, we can use the renormalization-group equations from
boundary conditions at high energy scales suggested by models to obtain
useful information on the “typical” superparticle mass spectrum.

26

Improves the unification of gauge couplings

Provides a candidate for cold dark matter (LSP)



Theoretical Reasons

It provides exact results for quantum gauge theories due 
to their duality properties and holomorphicity

Is an essential ingredient in superstring theory (the best 
candidate for a theory of quantum gravity)

Mathematical Reasons

Important tool in Mathematics. SUSY theories can be 
modified and converted in Topological Field Theories and 
exact QFT results can be used to clasify manifolds in 
topology and algebraic geometry



∫ Λ

d4k f(k) Λ being an UV cutoff.

The hierarchy problem

Loop corrections in QFT

In an effective theory Λ is a UV cutoff which signals
the scale at which the theory must be modified.

The standard model should be considered as an effective 
theory. New physics should appear at least at the scale:

MPl = (G)−
1

2 ≈ 1.2 · 1019 GeV Planck mass

Low energy physics should not be sensitive to Λ



δm ≈

2α

π
m log

MPL

m
≈ 0.2 m

ψ → eiαγ5 ψ

m = m0 + δm

Electron self-energy in QED:

e−

γ

e−
for Λ → ∞: Σee ∼ me

∫ Λ dk

k
→ lnΛ

⇒ logarithmically divergent correction to electron mass, δme

Within QED: divergence can be removed via renormalization
⇒ k → ∞ possible

QED as effective theory, underlying more fundamental theory at scale Λ
⇒ cutoff scale Λ

For Λ = MPl: δme ≈ 2 α
π me log(MPl/me) ≈ 0.2me

⇒ modest correction, proportional to me

reason: chiral symmetry in limit me → 0, ψe → eiγ5θψe

⇒ breaking proportional to me ⇒ symmetry “protects” me

δm ≈ α

∫ Λ d4k

k2(kµγµ − m)
∼ α m log

Λ

m
α → fine structure constant

The example of QED

The naive linear divergence would be problematically large 
but in fact:

The mass is protected by chiral symmetry



V = −µ2 φ† φ +
λ

4!

(

φ†φ
)2

µ
2

> 0 λ > 0

< φ >=

√
2 µ
√

λ
≡

v
√

2
v ∼ 246 GeV

MW =
gv

2
≈ 80 GeV MH = v

√

λ

2
=

√

2 µ

g is the SU(2) coupling constant

SM Higgs field

Negative mass is essential to break the symmetry

Electroweak scale

Masses:



Figure 1: One loop diagrams contributing to scalar mass squared in Yukawa theory.

high precision. This is equivalent to fine-tuning the Lagrangian parameters m0, λ, and y.
Even if we do so at one loop, two loop corrections will be quadratically divergent again.
In general, adjusting coupling constants so that the leading contribution appears only at
n-loop order simply suppresses the mass squared correction by a factor of the order (1/4π)n

relative to the UV scale M (assuming order one coupling constants). The need for such a
cancellation implies that the low energy physics is sensitive to arbitrarily high energy scales.
The presence of additional heavy particles with masses of order M can modify λ and y
and affect cancellations of quadratic divergencies that low energy theorist worked so hard to
arrange. As a result the mass of our light scalar ϕ will sensitively depend on the physics at
arbitrarily high energy scales. In the Standard Model a similar problem, usually referred to
as a gauge hierarchy problem, requires an explanation of a hierarchy of some 17 orders of
magnitude between the scale of electroweak symmetry breaking and the Planck scale.

It is useful to compare mass renormalization of a scalar field to that of a fermion. Theories
of massless fermions possess a chiral symmetry which forbids mass terms. Thus mass terms
can not be generated radiatively unless the symmetry is broken – for example by tree level
masses. In such a case radiative corrections to fermion masses are proportional to their tree
level values and can be at most logarithmically divergent. While the one loop contribution to
the fermion mass is enhanced by large logs, it can remain small even when the cutoff scale is
as large as MPl. This mechanism does not explain the origin of a hierarchy between fermion
masses and UV scales in the theory, but once introduced into the theory the hierarchy is
not destabilized by radiative effects. Thus mass hierarchies in the fermion sector are at least
technically natural. In fact, in some cases fermion masses arise dynamically. For example,
proton and neutron masses are largely determined by strong QCD dynamics and naturally
are of the order ΛQCD which, in turn, can easily be small compared to the Planck scale.
In this case, not only is the fermion mass stable against small changes in parameters of
the theory, it is also naturally small — QCD dynamics explains the origin of the hierarchy
between baryon masses and Planck scale.

We would like to find similar explanations for the origin and stability of the EWSB scale.
In particular, we would like to find an extension of the Standard Model with new physics at
the TeV. The presence of new fields and interactions would provide a cutoff for the Standard
Model calculation of quantum corrections to the Higgs mass. If the scale of new physics
is stable against radiative corrections, the technical naturalness problem would be resolved.
We would further like to find a theory which also explains the origin of the hierarchy between

3

δµ2
∼ −λ

∫ Λ d4k

k2
− µ2

δµ2
∼ −λΛ

2

µ2

Phys = µ2
− λΛ

2 µPhys =
√

λ 123 GeV

We require
√

λ ∼ 1 µPhys ∼ few hundreds of GeV

Λ ∼ 1019

Radiative corrections to the Higgs mass

No cancellation!!

very large fine tuning!!
As:



gF φψ̄ψ

Figure 1: One loop diagrams contributing to scalar mass squared in Yukawa theory.
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as a gauge hierarchy problem, requires an explanation of a hierarchy of some 17 orders of
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can not be generated radiatively unless the symmetry is broken – for example by tree level
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proton and neutron masses are largely determined by strong QCD dynamics and naturally
are of the order ΛQCD which, in turn, can easily be small compared to the Planck scale.
In this case, not only is the fermion mass stable against small changes in parameters of
the theory, it is also naturally small — QCD dynamics explains the origin of the hierarchy
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δµ2
∼ g2

F

∫ Λ d4k

(kµγµ)(kνγν)
∼ g2

F Λ2

(λ − g2

F ) Λ2φ† φ

Contribution of fermion loops

opposite sign to bosons

Total contribution to the lagrangian:

It vanishes if:

λ = g2

F No quadratically divergent term

This is precisely what SUSY does!!



λ (M2

H − M
2

f ) log Λ

For exact SUSY the potential is not renormalized

Non-renormalization theorem

If SUSY is broken and there is no mass degeneracy 
between partners:

No hierarchy problem if the masses of the SUSY 
partners are  of the order of few TeV


