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Extended supersymmetry

Theoretical and mathematical reasons to study (extended) supersymmetry:

Exact results for QFT due to duality properties and holomorphicity.
Essential ingredient in superstring theory.
SUSY theories can be converted into topological field theories and used
to classify manifolds in topology and algebraic geometry.
· · ·

From now on we will follow this track. We leave a detailed discussion of the
(phenomenologically relevant) minimal SUSY model for Javier’s part.

It is possible to have more than one supercharge, say, N ,

QI
α and Q̄I

α̇ =
(
QI
α

)†
I = 1, . . . ,N

Notice that the number of real supercharge components is 4N .

Sometimes it is useful to say that the theory has 4N supersymmetries or
supercharges; alternatively, it is N extended supersymmetric.
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Extended (super) Poincaré algebra

The anticommutator
{
Q, Q̄

}
transforms in the ( 1

2 ,
1
2 ) representation, thus it

has to be proportional to Pµ{
QI
α, Q̄J

β̇

}
= 2 C IJ (σµ)αβ̇ Pµ

But σµ are Hermitian, as well as the supercharges, then C IJ = CJI?, i.e., C is
Hermitian. Then, there is U,

QI
α → U I

K QK
α Q̄J

β̇
→ Q̄L

β̇
(U−1) J

L

that diagonalizes C = diag(cI). Now, cI > 0 (positivity of the energy), thus

QI
α →

√
cI QI

α Q̄J
β̇
→
√

cJ Q̄J
β̇

and we get the bracket {
QI
α, Q̄J

β̇

}
= 2 δIJ (σµ)αβ̇ Pµ

like N copies of the minimal supersymmetry.
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Extended (super) Poincaré algebra

{Q,Q} must be a linear combination of bosonic operators in the (0,0) and
(1,0) representations of the Lorentz group.

The only (1,0) is the self-dual part of Mµν , but it would not commute with Pµ.

Thus, we need a new generator, ZIJ{
QI
α,QJ

β

}
= 2 εαβ Z IJ ZIJ = −ZJI

that should be a linear combination of the internal symmetry generators,

ZIJ = (aa
IJ) T a

Z IJ are central extensions or central charges (which can be deduced from the
algebra and the Jacobi identities) ⇒ Z IJ ∈ Z(G).

The adjoint of the bracket above reads{
Q̄I
α̇, Q̄J

β̇

}
= −2 εα̇β̇ Z

IJ †

where we used εα̇β̇ = −εαβ .
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Extended (super) Poincaré algebra

[Pµ,Pν ] = 0 [Mµν ,Mρσ] = i (ηνρ Mµσ − ηνσ Mµρ − ηµρ Mνσ + ηµσ Mνρ)

[Pµ,Mρσ] = i (ηµρ Pσ − ηµσ Pρ)

[
T a,T b] = if ab

c T c [T a,Pµ] = [T a,Mµν ] = 0

[
QI
α,Pµ

]
=
[
Q̄I
α̇,Pµ

]
= 0

[
QI
α,T

a] = (ba)I
J QJ

α

[
Q̄I
α̇,T

a] = −Q̄J
α̇ (ba) I

J[
QI
α,Mµν

]
=

1
2

(σµν) βα QI
β

[
Q̄I
α̇,Mµν

]
= −1

2
Q̄I
β̇

(σ̄µν)β̇ α̇

{
QI
α, Q̄J

β̇

}
= 2 δIJ (σµ)αβ̇ Pµ{

Q̄I
α̇, Q̄J

β̇

}
= −2 εα̇β̇ Z

IJ † {
QI
α,QJ

β

}
= 2 εαβ Z IJ where ZIJ = (aa

IJ) T a

[ZIJ , anything] = 0
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Massless representations

In the light frame pµ = (E ,0,0,E). A state, thus, is determined by its energy
and helicity, |E , λ〉.

The eigenvalues of the Pauli-Lubanski vector, Wµ = − 1
2 ε

µνρσ Pν Mρσ,

Wµ |E , λ〉 = λ pµ |E , λ〉

Then, the state QI
α |E , λ〉,

W0 QI
α |E , λ〉 =

(
QI
α W0 +

[
W0,QI

α

])
|E , λ〉 = E

(
λ δ βα −

1
2

(σ3) βα

)
QI
β |E , λ〉

Thus QI
1 lowers the helicity by 1/2 and QI

2 raises it by 1/2.

Conversely, Q̄I
1̇

raises the helicity by 1/2 and Q̄I
2̇

lowers it by 1/2 due to the
extra minus factor.

Coming back to the SUSY algebra,{
QI

1, Q̄J
1̇

}
= 4E δIJ

{
QI

1, Q̄J
2̇

}
=
{
QI

2, Q̄J
1̇

}
=
{
QI

2, Q̄J
2̇

}
= 0

This means that we can just set QI
2 = 0 ⇒ Z IJ = 0
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Massless representations

The SUSY algebra reduces to a set

aI :=
1

2
√

E
QI

1 & aJ† :=
1

2
√

E
Q̄J

1̇

of creation/annihilation operators obeying a Clifford algebra,{
aI ,aJ†} = δIJ {

aI ,aJ} =
{

aI†,aJ†} = 0

Any irreducible representation is characterized by a ground state, |E , λ0〉,

aI |E , λ0〉 = 0 ∀I = 1, . . . ,N

We can build the multiplet by acting with the creation operators,

aI1† · · · aIk† |E , λ0〉 = |E , λ0 + k/2; I1 · · · Ik 〉 #states =

(
N
k

)
There is a maximum singlet state, aI1† · · · aIN † |E , λ0〉, with helicity λ0 +N/2.
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Massless multiplets

The total number of states in a massless multiplet is

Nmassless =
N∑

k=0

(
N
k

)
=
N∑

k=0

(
N
k

)
1k 1N−k = (1 + 1)N = 2N

There is an equal number of fermions and bosons

0 = (1− 1)N =
N∑

k=0

(
N
k

)
(−1)k 1N−k ⇒

N/2∑
k=0

(
N
2k

)
=

N/2∑
k=0

(
N

2k + 1

)
? N = 2 vector or chiral multiplet (λ0 = 0 and λ0 = −1), Ψ, contains

2 states with helicities ±1 (a vector boson Aµ)

4 states with helicities ±1/2 (two Weyl fermions ψ and λ)

2 states with helicity 0 (a complex scalar φ)
by CPT invariance (Lorentz-covariant QFT). It can be decomposed in terms of
N = 1 vector V ≡ (Aµ, λ) and chiral Φ = (φ, ψ) multiplets.
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Massless representations

? N = 4 vector multiplet (λ0 = −1) contains
2 states with helicities ±1 (a vector boson Aµ)

8 states with helicities ±1/2 (four Weyl fermions ψI)

6 states with helicity 0 (six scalars ΦA)
It can be decomposed in terms of N = 2 vector Ψ ≡ (Aµ, λ, ψ, φ) and hyper
H = (φq , φq̃ , ψq , ψq̃) multiplets.

? N = 8 (maximum) multiplet (λ0 = −2), has
2 states with helicities ±2

16 states with helicities ±3/2

56 states with helicities ±1

112 states with helicities ±1/2

70 states with helicity 0
These are described by the graviton, gµν , the gravitino,ψµ, and a bunch of
fermions and scalars that will not play an important rôle in what follows.
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Massive representations

In the rest frame, pµ = (m,0,0,0). A state, thus, is determined by its mass, its
spin and the third component of the spin, |m, s, s3〉.

The supercharges are operators of spin 1/2, thus

QI
α |m, s, s3〉 =

∑
s̃3

c(+)
s3s̃3
|m, s + 1/2, s̃3〉+

∑
s̃3

c(−)
s3s̃3
|m, s − 1/2, s̃3〉

The same is true for Q̄I
α̇ with, of course, different coefficients.

Coming back to the SUSY algebra,{
QI

1, Q̄J
1̇

}
=
{
QI

2, Q̄J
2̇

}
= 2m δIJ

{
QI

1, Q̄J
2̇

}
=
{
QI

2, Q̄J
1̇

}
= 0

and putting for the moment ZIJ = 0 ⇒
{
QI
α,QJ

β

}
=
{
Q̄I
α̇, Q̄J

β

}
= 0

Then, we can proceed almost as before by defining

aI
α :=

1√
2m
QI
α & aJ†

β̇
:=

1√
2m
Q̄J
β̇
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Massive representations

These are creation/annihilation operators obeying a 2N -dim Clifford algebra,{
aI
α,a

J†
β̇

}
= δαβ̇ δ

IJ {
aI
α,a

J
β

}
=
{

aI†
α̇ ,a

J†
β̇

}
= 0

An irreducible representation is characterized by a spin multiplet of ground
states, |m, s(0), s3〉,

aI
α |m, s(0), s3〉 = 0 ∀I = 1, . . . ,N α = 1,2

We can build the multiplet by acting with the creation operators,

aI1†
α̇1
· · · aIk†

α̇k
|m, s(0), s3〉 #states =

(
2N
k

)
The states are totally antisymmetric under interchange of (α̇i Ii )↔ (α̇j Ij ).

There is a maximum spin, smax = s(0) +N/2, and a minimum spin that is
smin = 0, if s(0) ≤ N/2, or smin = s(0) −N/2 otherwise.

The top state, reached after all 2N operators have been applied, has spin
s(0). It is obtained by applying operators aIk†

1̇
aIk†

2̇
all carrying vanishing spin.
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Massive multiplets

A CPT invariant multiplet demands s(0) = 0. The story proceeds as before,

Nmassive =
2N∑
k=0

(
2N
k

)
=

2N∑
k=0

(
2N
k

)
1k 12N−k = (1 + 1)2N = 22N

There is still an equal number of fermions and bosons.

This poses a puzzle for the supersymmetric Higgs mechanism:

If we build a Lagrangian with massless fields, as in the Standard Model, they
belong to short representations of 2N states.

How can the Higgs mechanism operate?

In a Higgs vacuum, some fields become massive and, thus, belong to a long
representation of 22N states.

A discrete quantity cannot vary continuously: quantum corrections cannot
change the length of the multiplet.

Are there massive short multiplets? Yes!
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Massive BPS multiplets

Consider Z IJ 6= 0. Since they commute with everything, the central extensions
can be diagonalized.

Choose a basis in the representation space where they are represented by
the complex numbers zIJ , zIJ = −zJI .

By means of U, z̄IJ = U K
I UJ

L zKL, they can be brought to the form

z̄ =

(
0 D
−D 0

)
D = diag

(
z(r)
)

r = 1, · · · ,N/2

z(r) being real and non-negative. (If N is odd, additional row of zeros.)

Now redefine the supercharges

U I
J QJ

α → QI
α Q̄I

α̇

(
U−1) I

J → Q̄
I
α̇

and introduce double indices, I = (a, r), compatible with the form of z̄.

The SUSY algebra reads, in this transformed basis,{
Q(a,r)
α , Q̄(b,s)

β̇

}
= 2 δab δrs (σµ)αβ̇Pµ
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Massive BPS multiplets

{
Q(a,r)
α ,Q(b,s)

β

}
= 2 εα̇β̇ ε

ab δrs z(r)

{
Q̄(a,r)
α̇ , Q̄(b,s)

β̇

}
= −2 εα̇β̇ ε

ab δrs z(r)

For odd N , we also have{
QNα , Q̄I

β̇

}
= 2 δN I (σµ)αβ̇Pµ

{
QNα ,QI

β

}
=
{
Q̄Nα̇ , Q̄I

β̇

}
= 0

We saw earlier that massless multiplets represent central charges trivially. For
the massive case,

A±αr :=
1
2

(
Q(1,r)
α ± Q̄α̇(2,r)

)
and Hermitian adjoints

Dotted and undotted indices are mixed while preserving covariance.

The SUSY algebra reads,
{

A±αr ,A±βs

}
=
{

A±αr ,A∓βs

}
=

{
A±αr ,

(
A∓βs

)†}
= 0,{

A±αr ,
(

A±βs

)†}
= δαβ δrs (m ± z(r)) ⇒ m ≥ z(r)

The mass is bounded from below by the eigenvalues of the central charges.
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Massive BPS multiplets

The massive multiplet saturating the (Bogomol’nyi) bound is special. Assume
that it is satisfied for N eigenvalues z(r).

The corresponding A−αr are represented trivially. By rescaling

a±αr := (m ± z(r))
−1/2 A±αr aNα := m−1/2 QNα (if N is odd)

we end up with a Clifford algebra for 2(N − N) fermionic degrees of freedom!

The situation parallels the one without central charges except for the fact that:

N is effectively reduced by N, the central charges satisfying the BPS bound.

It is immediate to see that Nmax = N/2. In that case, the Clifford algebra ends
up being N dimensional and the corresponding multiplets are short!

This is how the Higgs mechanism operates!

All fields becoming massive due to the Higgs mechanism are BPS states.

José D. Edelstein (USC) Lecture 6: Extended supersymmetry 20-nov-2012 15 / 15


