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Summary from Lecture 6

We introduced the extended super-Poincaré algebra:
{
QI
α, Q̄J

β̇

}
= 2 δIJ (σµ)αβ̇Pµ

{
QI
α,QJ

β

}
= 2 εαβ Z IJ · · ·

where ZIJ = (aa
IJ) T a, and

[
T a,T b

]
= if ab

c T c . I, J, . . . go from 1 to N .

The mass of all states is bounded from below, m ≥ z(r).

The number of states in massless and BPS massive multiplets is 2N , while
that of non-BPS massive multiplets is 22N .

Thus, fields becoming massive due to the Higgs mechanism are BPS.

Exact spectrum

Since they are short multiplets, their spectrum can be safely extended from
weak to strong coupling: it is quantum mechanically exact!
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R-symmetry

Recall that N = 1 supersymmetry has a global U(1) R-symmetry. It is an
automorphism of the algebra acting non-trivially on the supercharges.

If we go back to the extended SUSY algebra, it is immediate to see that, for
N > 1, the R-symmetry group is U(N ).

The supercharges (fermions) transform in the vector representation, QI
α.

For future reference let us recall the R-symmetry group for two cases:

For N = 2, the R-symmetry group is U(2) = SU(2)R × U(1)R .

In particular, for instance, ψ and λ in the N = 2 vector or chiral multiplet,
Ψ belong to a doublet of SU(2)R .

For N = 4, the R-symmetry group is U(4) = SU(4)R × U(1)R (besides,
SU(4)R ' SO(6)R , which happens to be the isometry group of S5).
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N = 2 supersymmetric gauge theory – the superfield

N > 1 is more constrained than N = 1; it is a particular subcase.

The vector superfield Ψ is made of a vector, V , and a chiral, Φ; they belong to
the same representation of the non-Abelian gauge group.

The N = 2 action must be simpler because, being enhanced by SU(2), the
R-symmetry relates the fermions of both components of Ψ.

In particular, this implies that the superpotential vanishes

W (Φ) = 0

Indeed, the N = 1 superfields fit into a chiral N = 2 superfield,

Ψ(x , θ, ϑ) = Φ(z, θ) +
√

2ϑα Wα(z, θ)

−1
2
ϑα ϑα

∫
d2θ̄

[
Φ(z − iθ σ θ̄, θ, θ̄)

]† e−2gV (z−iθ σ θ̄,θ,θ̄)

where zµ = xµ + iθ σµ θ̄ + iϑσµ ϑ̄ = yµ + iϑσµ ϑ̄ and Wα = − 1
8 D̄2e−2V Dαe2V .
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N = 2 supersymmetric gauge theory – the prepotential

The N = 2 superspace notation makes clear that the action is written in terms
of a single function, F(Ψ) called the prepotential

S =

∫
d4x L =

1
16π

Im
[∫

d4x d2θ d2ϑ F(Ψ)

]

The two remaining functions in N = 1 theory with adjoint superfields, f (Φ) and
K (Φ,Φ†), can be written in terms of a single holomorphic function. Indeed,

f (Φ) =
∂2F(Φ)

∂Φ2 K (Φ,Φ†) =
1
2i

[
Φ† e2V ∂F(Φ)

∂Φ
− h.c.

]

Being holomorphic, it inherits good properties (that you will see later). For
instance, f (Φ) is not corrected after 1-loop; thus F(Ψ) isn’t either.

Formally, the expression above is the most general N = 2 Lagrangian for a
supersymmetric gauge theory. In the case of an effective field theory, F is
not restricted to be quadratic. It is only constrained by holomorphicity.
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N = 2 supersymmetric gauge theory – the field content

At tree-level, the prepotential reads

Fclass(Ψ) := F0(Ψ) =
1
2
τ0 Tr Ψ2

which has the right scaling dimension.

If we plug it into S and integrate on ϑ,

L =
1

16π
Im
[(∫

d2θ
∂2F0(Φ)

∂Φa∂Φb W aα W b
α + 2

∫
d2θ d2θ̄

(
Φ†e2gV )a ∂F0

∂Φa

)]

where the superfields are in the adjoint of SU(Nc), Φ = Φa T a, Wα = W a
α T a,

i.e., a,b, . . . are Lie algebra indices and Tr (T a T b) = δab.

Ψ is decomposed in V ≡ (Aµ, λ) and Φ = (φ, ψ). We refer to φ as the higgs,
the Weyl spinors ψ and λ as the higgsino and the gluino, and Aµ as the gluon.

Therefore, this is just a particular non-Abelian gauge theory with scalars and
fermions in the adjoint, and certain couplings dictated by SUSY.
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N = 2 supersymmetric gauge theory – the Lagrangian

The previous N = 2 Lagrangian can be written in terms of its components

L =
1
g2

0
Tr
(
− 1

4
Fµν Fµν + g2

0
θ0

32π2 Fµν F̃µν + (Dµφ)† Dµφ− 1
2

[φ†, φ]2

− i λσµDµλ̄− i ψ̄σ̄µDµψ − i
√

2 [λ, ψ] φ† − i
√

2 [λ̄, ψ̄] φ
)

where we used the expression for the bare complexified coupling constant

τ0 =
4πi
g2

0
+
θ0

2π

The quadratic prepotential gives the renormalizable microscopic Lagrangian.

The theory is asymptotically free

β(g) = µ
dg
dµ

= − g3

16π

(
11
3
− 2

3
× 2− 1

3

)
C2(G) = − g3

16π
(2 Nc)

hence, confinement is expected to be present at strong coupling.
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N = 2 supersymmetric gauge theory – R-symmetry and chiral anomaly

This theory has a classical global R-symmetry U(2)R = SU(2)R × U(1)R :

The SU(2)R rotates the two supercharges as well as the two fermions as
doublets. The gauge boson and the higgs are singlets.

The U(1)R acts as Φ→ e2iα Φ(e−iαθ) and V → V (e−iαθ). Since
θ → eiαθ, ϑ→ eiαϑ, F must have charge 4, i.e., F → e4iα F .

U(1)R acts as a chiral symmetry. Thus, it is broken quantum mechanically

∂µ jµR = − Nc

8π2 Tr Fµν F̃µν

This dictates the way the 1-loop effective action changes under U(1)R

δLeff = α ∂µ jµR = −αNc

8π2 Tr Fµν F̃µν

due to Noether’s theorem.
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N = 2 supersymmetric gauge theory – full perturbative prepotential

Seiberg’s non-renormalization theorem (to be discussed) applies:

Fpert(Φ) = Fclass(Φ) + F1−loop(Φ)

gives the complete Lagrangian to all orders in perturbation theory.

This implies that the full perturbative contribution to the effective action can be
obtained by integrating the infinitesimal anomalous variation.

Notice that log Tr Φ2 → log Tr Φ2 + 4iα under U(1)R .

At the level of the prepotential, thus, the result is simply

Fpert(Φ) =
1
2
τ0 Tr Φ2 +

i Nc

4π
Tr Φ2 log

(
Tr Φ2

Λ2

)

the coefficient being fixed from the value of the chiral anomaly.

Λ is the quantum mechanical dynamically generated scale, as in QCD.
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N = 2 supersymmetric gauge theory – the fate of the U(1)R

The only term in Leff affected by the U(1)R transformation is the θ-term,

θ → θ + 4Nc α

since, recall

δLeff = α ∂µ jµR = −αNc

8π2 Tr Fµν F̃µν

At the level of the effective action however, notice that, since

1
32π2

∫
Fµν F̃µν∈ Z (instanton number)

a discrete subgroup, Z4Nc ⊂ U(1)R , remains a symmetry of the perturbative
effective action,

α = 2πi
k

4Nc
k = 1, · · · ,4Nc

This is a general feature of the U(1)R subgroup of U(N )R .
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The classical moduli space,M0

Let us now focus on the classical vacua of the theory. The potential reads

V =
1

2g2 Tr
(

[φ†, φ]2
)

Unbroken supersymmetry requires that V vanishes in the vacuum.

There is a family of vacua parameterized by constant fields φ0 such that φ0
and φ†0 commute. One can always rotate it into the Cartan subalgebra, H,

〈φ〉 = φ0 =

Nc−1∑

k=1

ak Hk

Hk are the generators of H and ak are complex numbers. For G = su(2), the
Cartan subalgebra is simply generated by the Pauli matrix σ3 and 〈φ〉 = a σ3.

For a 6= 0, the gauge symmetry group is broken, SU(2)→ U(1).

There is a singular point, a = 0, where the gauge symmetry is unbroken.
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The classical moduli space,M0

φ0 labels a continuous family of inequivalent ground states that constitute the
classical moduli space,M0.

The variables ak are not gauge invariant, in particular under discrete Weyl
transformations. Hence they are not faithfull coordinates forM0.

The Weyl group for a Lie algebra is generated by reflections in the roots; in the
su(2) case, a σ3 → −a σ3. In general, it acts by conjugation, φ0 → g−1φ0g.

Thus, Weyl invariants can be obtained from the characteristic polynomial

PNc (λ) = det (λ− φ0)

The coefficients of the polynomial (sometimes called W ANc−1 ),

PNc (λ) = λNc − ū2(ak ) λNc−2 − ū3(ak ) λNc−3 − · · · − ūNc (ak )

label gauge inequivalent vacua and, thus, parameterize faithfullyM0.

There is no λNc−1 term due to the traceless condition of su(Nc).
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The classical moduli space,M0

A simple calculation shows that

ū2(ak ) =
1
2

Trφ0
2 ū3(ak ) =

1
3

Trφ0
3 ū4(ak ) =

1
4

Trφ0
4 − 1

8
(Trφ0

2)2

These are Casimir operators and, hence, Weyl invariant by construction,

ūk (ai ) =
1
k

Trφ0
k + lower dimensional Casimirs

Coming back to SU(2), there is a single (quadratic) Casimir (call ū := ū2),

ū(a) =
1
2

Trφ0
2 =

1
2

Tr (aσ3)2 = a 2

and the characteristic polynomial reads simply P2(λ) = λ2 − ū.

For ū 6= 0, the gauge symmetry group is broken, SU(2)→ U(1).

There is a singular point, ū = 0, where the gauge symmetry is unbroken.
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The classical moduli space,M0

of the simple singularity (3.5). Specifically, one has up to normalization:†

SU(2) : ∆0 = u

SU(3) : ∆0 = 4u3 − 27v2

SU(4) : ∆0 = 27 v4 − 4 u3 v2 + 16 u4 w − 144 u v2 w + 128 u2 w2 + 256 w3

(3.11)
We schematically depicted these singular loci ∆0(u) = 0 in Fig.3.

Fig.3: Singular loci Σ0 in the classical moduli spaces M0 of pure
SU(n) N =2 Yang-Mills theory. They are nothing but the bifurca-
tion sets of the type An−1 simple singularities, and reflect all possible
symmetry breaking patterns in a gauge invariant way (for SU(3) and
SU(4) we show only the real parts). The picture for SU(4) is known
in singularity theory as the “swallowtail”.

The discriminant loci Σ0 are generally given by intersecting hypersurfaces of
complex codimension one. On each such surface one has Zα = 0 for some pair of roots
±α, so that there is an unbroken SU(2), and the Weyl group action rα : Zα → −Zα

is singular. On intersections of these hypersurfaces one has, correspondingly, larger
unbroken gauge groups. All planes together intersect in just one point, namely in
the origin, where the gauge group SU(n) is fully restored. Thus, all possible classical
symmetry breaking patterns are encoded in the discriminants of WAn−1(x, u).

Finally, note that for a general singularity with n variables, the discriminant locus
Σ0 coincides with what is called the level bifurcation set of a singularity W(xi, u),
because on it the level surface

Vu =
{

xi : W(xi, u) = 0, ||x|| ≤ ε
}

(3.12)

† We will often denote u2, u3, u4 by u, v, w.

− 12 −

Figure: M0 for SU(2) is the complex ū-plane. The origin displays classical symmetry
enhancement. Since P2(λ) = (λ− ū1/2)(λ + ū1/2), this is captured by the vanishing
locus, Σ0, of the classical discriminant ∆0 := (ū1/2 − (−ū1/2))2 = 4 ū.

Another way to define the ūk is through the classical Miura transformation.
Namely, factorizing the characteristic polynomial

PNc (λ) =

Nc∏

i=1

(λ− ei (ak ))

where ei (ak ), i = 1, . . . ,Nc , are the eigenvalues of φ0 .
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The classical moduli space,M0

Expanding PNc (λ), it is easy to see that

ūk (a) = (−1)k+1
∑

j1 6=···6=jk

ej1 (a) · · · ejk (a)

which are symmetric polynomials of the eigenvalues ei (ak ), thus manifestly
invariant under the Weyl group (which acts by permutation).

Consider the SU(3) case (call ū := ū2 and v̄ := ū3),

P3(λ) = λ3 − ū λ− v̄ = (λ− e1) (λ− e2) (λ− e3)

where, of course, ū = ū(a), v̄ = v̄(a),

ū(a) = a1
2 + a2

2 − a1 a2

v̄(a) = a1 a2 (a1 − a2)

and e1(a) = a1, e2(a) = −a2 and e3(a) = a2 − a1.
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The classical moduli space,M0

of the simple singularity (3.5). Specifically, one has up to normalization:†

SU(2) : ∆0 = u

SU(3) : ∆0 = 4u3 − 27v2

SU(4) : ∆0 = 27 v4 − 4 u3 v2 + 16 u4 w − 144 u v2 w + 128 u2 w2 + 256 w3

(3.11)
We schematically depicted these singular loci ∆0(u) = 0 in Fig.3.

Fig.3: Singular loci Σ0 in the classical moduli spaces M0 of pure
SU(n) N =2 Yang-Mills theory. They are nothing but the bifurca-
tion sets of the type An−1 simple singularities, and reflect all possible
symmetry breaking patterns in a gauge invariant way (for SU(3) and
SU(4) we show only the real parts). The picture for SU(4) is known
in singularity theory as the “swallowtail”.

The discriminant loci Σ0 are generally given by intersecting hypersurfaces of
complex codimension one. On each such surface one has Zα = 0 for some pair of roots
±α, so that there is an unbroken SU(2), and the Weyl group action rα : Zα → −Zα

is singular. On intersections of these hypersurfaces one has, correspondingly, larger
unbroken gauge groups. All planes together intersect in just one point, namely in
the origin, where the gauge group SU(n) is fully restored. Thus, all possible classical
symmetry breaking patterns are encoded in the discriminants of WAn−1(x, u).

Finally, note that for a general singularity with n variables, the discriminant locus
Σ0 coincides with what is called the level bifurcation set of a singularity W(xi, u),
because on it the level surface

Vu =
{

xi : W(xi, u) = 0, ||x|| ≤ ε
}

(3.12)

† We will often denote u2, u3, u4 by u, v, w.

− 12 −

Figure: M0 for SU(3) has two complex coordinates, ū and v̄ . Classical symmetry
enhancement is captured by the vanishing locus, Σ0, of the classical discriminant.

∆0 := (e2 − e1)2 (e3 − e2)2 (e1 − e3)2 = 4 ū 3 − 27 v̄ 2

We will focus from now on almost exclusively in the SU(2) case.
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The effective prepotential: perturbative part

Let us consider for the moment a generic situation, i.e., a vacuum φ0 = aσ3
where SU(2)→ U(1). If we evaluate Fclass(a),

Fclass(a) =
1
2
τ0 Trφ0

2 =
1
2
τ0 a a Tr (σ3 σ3) = τ0 a2

It is convenient, to make contact with the SU(Nc) case,

Fclass(ak ) =
1

2Nc
τ0

∑

α+∈∆+

z2
α+

where ∆+ are the positive roots, and zα+ := α+ · φ0 = zα+ (ak ).

In the case of SU(2), za := 2a, and

Fclass(a) =
1
4
τ0 za

2 = τ0 ū

The 1-loop correction can be obtained by plugging φ0 in the expression above

F1−loop(a) =
i

4π
za

2 log
(

za
2

Λ2

)
=

i
π

ū log
(

4ū
Λ2

)
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The effective prepotential: perturbative part

Again, this can be similarly written in the SU(Nc) case as

F1−loop(ak ) =
i

4π

∑

α+∈∆+

z2
α+

log

(
z2
α+

Λ2

)

Notice that F1−loop(ak ) diverges if zα+ (ak ) vanishes. These singularities are in
one-to-one correspondence to those ofM0.

From the kinetic term of the complex scalar, we see that

Tr (Dµφ0)† Dµφ0 = Tr (i[Wµ, φ0])† (i[Wµ, φ0])

=
1
2

∑

α+∈∆+

|zα+ |2 W±α+
µ Wµ±α+

Whenever zα+ (ak ) = 0:
A pair of charged gauge bosons become massless, and
Classically, there is gauge symmetry enhancement.
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