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The effective prepotential: perturbative part

Let us consider for the moment a generic situation, i.e., a vacuum φ0 = aσ3
where SU(2)→ U(1). If we evaluate Fclass(a),

Fclass(a) =
1
2
τ0 Trφ0

2 =
1
2
τ0 a a Tr (σ3 σ3) =

1
2
τ0 a2

It is convenient, to make contact with the SU(Nc) case, to write

Fclass(a) =
1
4
τ0 za

2 = τ0 ū

where, in this case, za := 2a.

The 1-loop correction can be obtained by plugging φ0 in the expression above

F1−loop(a) =
i

4π
za

2 log
(

za
2

Λ2

)
=

i
π

ū log
(

4ū
Λ2

)
Notice that F1−loop(a) diverges if za (or, equivalently, ū) vanishes. In general,
these singularities are in one-to-one correspondence to those ofM0.
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Massive charged gauge bosons are BPS

Indeed, whenever this happens there is a pair of charged gauge bosons that
become massless; classically, there is gauge symmetry enhancement.

We know that the charged gauge bosons must saturate the BPS bound. In
fact, from the kinetic term of the complex scalar, we see that

(Dµφ0)† Dµφ0 = (i[Wµ, φ0])† (i[Wµ, φ0]) = W a
µ W µ b a a (ada σ3, adb σ3)

Then, when taking the trace

Tr (Dµφ0)† Dµφ0 ' za
2 W +

µ W µ + + za
2 W−

µ W µ−

the gauge bosons associated to the step generators σ± get a (BPS) mass

M±(a) =
1
2
|za| = |a|

According to our earlier discussion za must be the value of the central charge
corresponding to a gauge boson W±

µ .
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Massive charged gauge bosons are BPS

In order to see how this happens, let us consider a simpler example: the 3d
N = 2 Abelian Higgs model,

LN=2 =

∫
d3x

{
− 1

4
F 2

µν +
1
2
|Dµϕ|2 −

e2

8
(|ϕ|2 − ϕ0

2)2
}

where, for simplicity, we consistently set to zero a scalar field and all fermions.

Noether N = 2 supercharges are given by

Q =
√

2
∫

d2x J 0
N=2 := η Q + Q η

where J µ
N=2 is the current associated with SUSY transformations. By explicit

computation (we neglect quadratic terms in the fermions)

Q =
√

2
∫

d2x
[(
−1

2
εµνλ Fµν γλ −

e
2

(|ϕ|2 − ϕ0
2)

)
γ0Σ + i(6D ϕ)∗γ0ψ

]
For static configurations with A0 = 0, we compute the canonical brackets,
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Massive charged gauge bosons are BPS

{
Qα,Qβ

}
= 2 (γ0)αβ P0 + δαβ z

where the mass reads

P0 = E =

∫
d2x

[
1
4

F 2
ij +

1
2
|Diϕ|2 +

e2

8
(|ϕ|2 − ϕ0

2)2
]

while the central charge is given by

z = −
∫

d2x
[e

2
εij Fij (|ϕ|2 − ϕ0

2) + iεij (Diϕ) (Djϕ)∗
]

It is the topologically quantized magnetic flux of the Abelian Higgs model,

z =

∫
d2x εij ∂i

(
eϕ0

2 Aj + i ϕ∗Djϕ
)

= eϕ0
2
∮

Ai dx i = 2πn ϕ0
2

after Stokes theorem (using Diϕ→ 0 at∞, where ϕ→ ϕ0 einθ). n ∈ Z gives
the homotopy class to which Ai belongs.
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Massive charged gauge bosons are BPS

The N = 2 Abelian Higgs model has taught us that magnetic BPS states have

M(n) = |z(n)| ' n ϕ0
2

The same exercise can be done in the N = 2 supersymmetric gauge theory.

For a generic vacuum, SU(2)→ U(1), the central charge of a state with n (m)
units of electric (magnetic) charge with respect to the unbroken U(1) reads

Z (n,m) = n a + m τ0 a

It arises, as before, from boundary terms in the supercharge algebra.

From M±(a) = |a| we can read off the electric charges of the massive gauge
bosons with respect to the unbroken U(1).

A hypothetical (’t Hooft–Polyakov) magnetic monopole should have a mass

Mmonopole(a) = |τ0 a| ' 4π
g2 |a|
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The rôle of instantons

Recall that the theory is asymptotically free,

β(g) = µ
dg
dµ

= − g3

4π

which can be written as
d Im τ

d logµ
=

2
π

⇒ Im τ =
4π
g2 =

2
π

log
(µ

Λ

)
The energy scale to compute the Wilsonian effective action is provided by the
gauge boson mass, a, at a given vacuum, i.e., µ ∼ a.

In the high momenta region, p ∼ a� Λ, the perturbative calculation is reliable.

At lower energies, non-perturbative instanton corrections start to dominate.

A configuration with instanton number k contributes to the path integral as

exp
(
−8π2k

g2

)
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The full Wilsonian effective action

exp
(
−8π2k

g2

)
= exp

(
−2πk

2
π

log
(a

Λ

))
=

(
Λ

a

)4 k

Notice that Λ is defined as the value where formaly g2 diverges, and hence
signals the onset of non-perturbative dominated phenomena for a� Λ.

The most general form of the Wilsonian effective prepotential is

F(a) =
1
4
τ0 z2

a +
i

4π
z2

a log
(

z2
a

Λ2

)
+

1
2πi

∞∑
k=1

Fk (a) Λ4 k

Fk (a) are homogeneous functions of degree 2− 4 k ⇒ F(a) has degree 2.

Computing Fk (a) means fully solving the Wilsonian effective action for N = 2
SYM theory.

This is what Nathan Seiberg and Edward Witten did in 1994!
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Symmetries

Getting Fk (a) as the result of a honest computation is really hard.

Instead, a clever route to construct an effective action amounts to looking first
at the set of possible answers.

It is in this respect that the use of symmetries at hand is instrumental.

The resulting action has to be N = 2 supersymmetric (thus, being written in
terms of an effective prepotential), possess a generic U(1) gauge group, and
(a residual chiral) Z8 discret symmetry.

Moreover, being a low energy effective action we will content ourselves with
terms with, at most, two derivatives. Higher derivative (non-renormalizable)
terms are, indeed, present and subleading.

At a generic point ofM0, the Wilsonian effective action should look like

L =
1

4π
Im
[∫

d4θ

(
∂F(a)

∂a
ā
)

+

∫
d2θ

1
2

(
∂2F(a)

∂a 2 W α Wα

)]
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Towards the quantum moduli space

The prepotential F(a) describes the geometry of the moduli space. In fact,
writing down the bosonic kinetic part of the previous Lagrangian,

L B
kin =

1
4π

Im
(
∂2F(a)

∂a 2

)[
(∇µa)∗ (∇µa)− 1

4
(FµνFµν + iFµν F̃µν)

]
it is clear that a is the coordinate of a manifold whose metric is given by the
imaginary part of the complexified coupling constant, gaā(a) = Im τ(a),

ds2 = gaā(a) da dā = Im τ(a) da dā := Im
(
∂2F(a)

∂a 2

)
da dā

usually referred to as the Zamolodchikov metric.

Since F(a) is holomorphic, Im τ(a) is an harmonic function and, therefore, it
cannot have a global minimum. If the coupling is globally defined, it could not
be positive everywhere (unless τ(a) = τ0).

τ(a) cannot be globally defined since Im τ(a) ≥ 0

José D. Edelstein (USC) Lecture 8: The quantum moduli space 27-nov-2012 10 / 19



Towards the quantum moduli space

We should rely on distinct local descriptions valid for different regions of the
quantum moduli space.

Whenever Im τ(a)→ 0 there is the need to use a different set of coordinates,
â, such that Im τ̂(â) is non-singular and non-vanishing.

This is possible if the singularity of gaā(a) is only a coordinate singularity.

Notice that, to all orders in perturbation theory

τ(a) = τ(ū(a)) = τ̃0 +
2i
π

log
(

ū(a)

Λ2

)
=

i
π

[
3 + log

(
a 2

Λ2

)]
The logarithm appearing at 1-loop makes τ(a) a multi-valued function.

Its imaginary part, however, is single-valued and positive in the semiclassical
region |a| � Λ (where the expression is valid).

Thus, ū(a) = a 2 is a good local coordinate in the semiclassical patch of the
quantum moduli space.
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Duality

τ(a) gives the electromagnetic coupling to all orders in perturbation theory.

As mentioned, a and ā (actually a 2 and ā 2) are good and faithful coordinates
in the semiclassical region a 2 � Λ2.

This means that the original superfields Φ and Wα are the relevant degrees of
freedom; the appropriate fields to describe the low-energy effective action.

Recall the form of the effective action

L =
1

4π
Im
[∫

d4θ ā F ′(a) +
1
2

∫
d2θ F ′′(a) W α Wα

]
Let us define a dual field aD, aD := F ′(a) (i.e., in the microscopic theory,
ΦD = F ′(Φ) or, better, Φc

D = ∂F(Φ)/∂Φc).

Let us also introduce a dual prepotential FD(aD), FD
′(aD) := −a.

This is a Legendre transformation.
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Duality

It can be used to show that

Im
∫

d4θ ā F ′(a) = −Im
∫

d4θ aD F̄D
′(āD) = Im

∫
d4θ āD FD

′(aD)

Thus, the first term in the action is duality invariant.

This is reminiscent of a canonical transformation in which F ′(a) resembles a
(complex) momentum.

As such, it is a transformation with a trivial Jacobian for the integration
measure of the path integral.

Concerning the second term, it contains Wα and we have not specified its
transformation properties. Wα contains the U(1) field strength Fµν ,

Wα = −1
4

D̄2DαV = −iλα + θα D − i(σµνθ)α Fµν − θ2(σµDµλ̄)α

The Fµν is not arbitrary but of the form Fµν = ∂µAν − ∂νAµ for some Aµ.
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Duality

This translates into the Bianchi identity ∂ν F̃µν = 0. This constraint reads, in
superspace, Im(DαW α) = 0.

In the path integral we can integrate over V only or, else, over Wα while
imposing the constraint by a real Lagrange multiplier which we call VD,∫
DV exp

[
i

8π
Im
∫

d4xd2θ F ′′(a) W α Wα

]
'
∫
DWαDVD

exp
[

i
8π

Im
∫

d4x
(∫

d2θ F ′′(a) W αWα +
1
2

∫
d2θ d2θ̄ VD DαW α

)]
Now, observe that (using D̄β̇ W α = 0)∫

d2θ d2θ̄ VD DαW α = −
∫

d2θ d2θ̄ DαVD W α =

∫
d2θ D̄2(DαVD W α)

=

∫
d2θ (D̄2DαVD) W α = −4

∫
d2θ (WD)α W α
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Duality

The path integral becomes Gaussian in Wα∫
DWαDVD exp

[
i

8π
Im
∫

d4x
∫

d2θ (F ′′(a) W αWα − 2(WD)α W α)

]
thus leading to the following expression∫

DVD exp
[

i
8π

Im
∫

d4x
∫

d2θ

(
− 1
F ′′(a)

W α
D WDα

)]
This is a remarkable result. The SUSY Yang-Mills action is reexpressed in
terms of an almost identical dual action except for the fact that

τ(a)→ − 1
τ(a)

τ(a) =
θ(a)

2π
+

4πi
g2(a)

Thus, the duality transformation inverts the gauge coupling. It is a so-called
strong-weak duality. WDα has among its components the dual field strength
F̃µν . This generalizes the old Montonen-Olive electromagnetic duality.
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The duality group

If we wish to express everything in terms of dual variables,

FD
′′(aD) = −a′(aD) = − 1

aD
′(a)

= − 1
F ′′(a)

and the whole Lagrangian keeps its form but now in terms of dual variables

L =
1

4π
Im
[∫

d4θ āD FD
′(aD) +

1
2

∫
d2θ FD

′′(aD) W α
D WDα

]
The duality map is a strong/weak coupling transformation and the Lagrangian
remains invariant formally in terms of the new variables.

It is convenient to rewrite the Lagrangian as

L =
1

8π
Im
∫

d2θ aD
′(a) W α Wα +

1
8πi

∫
d4θ (ā aD − āD a)

The duality discussed above can be casted as(
aD
a

)
→
(

0 1
−1 0

)(
aD
a

)
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The duality group

An extra symmetry can be readily identified in

L =
1

8π
Im
∫

d2θ aD
′(a) W α Wα +

1
8πi

∫
d4θ (ā aD − āD a)

It is given by the following transformation(
aD
a

)
→
(

1 k
0 1

)(
aD
a

)
k ∈ Z

due to the instanton density and reality properties of the Lagrangian.

Both symmetries, together, generate the group S`(2,Z).

The discussion can be extended to SU(Nc), giving S`(2(Nc − 1),Z).

The metric on the moduli space can be written in an S`(2,Z) invariant fashion

ds2 = Im (F ′′(a)) da dā = Im (daD dā) =
i
2

(da dāD − daD dā)
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More on the BPS spectrum

Recall that, for a generic vacuum, the central charge of a dyon configuration
or state with n (m) units of electric (magnetic) charge reads

Z (n,m) = n a + m τ0 a

This was obtained from a classical computation using Poisson brackets. The
right quantum mechanical formula should be duality invariant

Z (n,m) = n a + m aD = (m n)

(
aD
a

)
A matrix M ∈ S`(2,Z) reads

M =

(
a b
c d

)
with a,b, c,d ∈ Z and ad − bc = 1

A duality transformation of the (aD,a) coordinates implies an analogous
transformation of the charge vector (m,n) by acting with M, the dual quantum
numbers, (m̃, ñ), being still integers.
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Browsing the moduli space

The classical moduli space,M0, has a faithful complex coordinate,

ū =
1
2

Tr 〈φ〉2 = a 2

Now, the gauge invariant object relevant in the quantum mechanical theory is

u =
1
2
〈Trφ2〉

It is easy to verify that they agree classically (u →∞), but u = ū +O(Λ2).

The dynamically generated scale Λ triggers the quantum corrections. If we
take Λ→ 0, any a will be larger which is a signal of semiclassical behavior.

In other words, u = a 2 +O(Λ2). Obtaining the exact relation u(a) is the aim of
our lectures. In the region u →∞, due to asymptotic freedom,

aD = F ′(a) =
i
π

a
[
log
(

a 2

Λ2

)
+ 1
]
' i
π

√
u
[
log
( u

Λ2

)
+ 1
]
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