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The duality group

The duality group is S`(2,Z). M ∈ S`(2,Z) reads

M =

(
a b
c d

)
with a,b, c,d ∈ Z and ad − bc = 1

The central charge of a dyon reads

Z (n,m) = n a + m τ0 a

The right quantum mechanical formula should be duality invariant

Z (n,m) = n a + m aD = (m n)

(
aD
a

)
A duality transformation on (aD,a) implies an analogous transformation of the
charge vector (m,n).

The dual quantum numbers, (m̃, ñ), are still integers.
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Browsing the moduli space

The classical moduli space,M0, has a faithful complex coordinate,

ū =
1
2

Tr 〈φ〉2 = a 2

Now, the gauge invariant object relevant in the quantum mechanical theory is

u =
1
2
〈Trφ2〉

It is easy to verify that they agree classically (u →∞), but u = ū +O(Λ2).

Λ triggers the quantum corrections. If we take Λ→ 0, any a will be larger
which is a signal of semiclassical behavior.

In other words, u = a 2 +O(Λ2). Obtaining u(a) is the goal. In the region
u →∞, due to asymptotic freedom,

aD = F ′(a) =
i
π

a
[
log
(

a 2

Λ2

)
+ 1
]
' i
π

√
u
[
log
( u

Λ2

)
+ 1
]
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Singularities in the quantum moduli space

Now, take u encircling clockwise the point at∞ on the Riemann sphere,

aD →
i
π

√
e2πiu

[
log
(

e2πiu
Λ2

)
+ 1
]

= −aD + 2a a→
√

e2πiu = −a

(notice that a2 is unaffected). In other words, when u →∞,(
aD
a

)
→M∞

(
aD
a

)
where M∞ =

(
−1 2
0 −1

)
We have pinpointed a singularity (a branch point) ofMΛ at u =∞.

How many singularities are there inMΛ?

Since a branch point has to start and end somewhere, there must be at least
one. Is it the singularity classically located at the origin ofM0? Recall:

U(1)R → Z8 acts as φ→ e2iαφ with α = 2π k
8 . Then, for odd k , u → −u.
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Three singularities for Muster Mark

Thus, singularities inMΛ come in pairs, except at the origin. That is precisely
a suspicious point where, at the classical level, there was a singularity.

Hence, if there are two singularities one should be at u = 0. But, by contour
deformation, M0 = M∞. Then a2 would be a global coordinate onMΛ, and
this is not possible. Two singularities are not enough.

If there are three singularities, we know that a couple of them will be placed at
u = ±u0 for some u0 6= 0.

But what about the former classical singularity at the origin? Does it imply
that there should be at least four singularities? NO.

Monodromy arguments plus number theory rule out this possibility: three!

The singularity ofM0 disappears at quantum level! Clasically, u = 0 means
no Higgs mechanism, thus, Wilsonian effective action should break down.
But classical reasoning is not valid when a→ 0!

The point a = 0 does not belong toMΛ.
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The nature of the singularities

We might naively conjecture that there are still gauge bosons that become
massless at u = ±u0. However, massless gauge bosons would imply an
asymptotically conformally invariant theory in the IR.

Conformal invariance, in turn, implies u = 1
2 〈Trφ2〉 = 0.

Singularities at u = ±u0 do not correspond to massless gauge bosons.

There are no other elementary N = 2 multiplets in our theory. There should
be collective excitations (magnetic monopoles, dyons) becoming massless at
these singularities.

If there is a magnetic monopole, its (BPS) mass is M = |aD|. Thus, this would
imply that aD(u0) = 0. They are described by N = 2 hypermultiplets that
couple to ΦD and Wα

D just as ‘electrons’ would couple locally to Φ and Wα.

The Wilsonian theory in the vicinity of u = u0 would be nothing but N = 2
SQED with light electrons and a subscript D everywhere: an N = 2 SQMD!
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Weakly coupled massless monopoles

N = 2 SQMD is not asymptotically free: it has a positive β function

dgD

d logµ
=

gD
3

8π

But the scale µ is provided by aD and τ(aD) = 4πi/gD
2 (θD vanishes in an

Abelian theory). Thus, for u ' u0 or aD ' 0,

dτD

d log aD
= − i

π
⇒ τD(aD) = − i

π
log aD

Notice that gD ' 0 when aD ' 0. Recalling that τD(aD) = −a′(aD),

a(aD) ' a0 +
i
π

aD log aD

aD should be a good coordinate around u0, hence depend linearly on u,

aD(u) ' c0(u − u0) a(u) ' a0 +
i
π

c0(u − u0) log(u − u0)

There is a monodromy induced when u − u0 → e2πi (u − u0).
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Weakly coupled massless dyons

The monodromy can be easily computed(
aD
a

)
→ Mu0

(
aD
a

)
where Mu0 =

(
1 0
−2 1

)
(notice that aD is unaffected, as a2 around∞). To obtain the monodromy at
−u0 it is sufficient to realize that

M∞ = Mu0 M−u0 ⇒ M−u0 =

(
−1 2
−2 3

)
What is the massless state responsible of the singularity at −u0? Recall the
BPS mass spectrum

Z (n,m) = n a + m aD = (m n)

(
aD
a

)
The monodromy transformation can be interpreted as acting on the magnetic
and electric quantum numbers. The state of vanishing mass should be
monodromy invariant, hence a left eigenvector of M−u0 with unit eigenvalue.
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Weakly coupled massless dyons

This is the case for Mu0 and the magnetic monopole. From M−u0 we can see
that the massless state is a (1,−1) dyon. We can ask about the solution to

(m n) M(m,n) = (m n)

which will give the monodromy matrix that should appear for a singularity due
to a massless dyon with charges (m,n). One readily finds

M(m,n) =

(
1 + 2m n 2n 2

−2m 2 1− 2m n

)

It is instructive to see that M∞ =

(
−1 2
0 −1

)
does not have this form: it

does not correspond to a hypermultiplet becoming massless.

If there were p strong coupling singularities, we should have

M∞ = Mu1 · · ·Mup with Mui = M(mi ,ni )

There seems to be no solution to this equation for p > 2!
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The Seiberg-Witten solution

After this long journey, we have arrived at the following state of the art:
We know the form of the prepotential:

F(a) =
1
2
τ0 a 2 +

i
2π

a 2 log
(

a 2

Λ2

)
+

1
2πi

∞∑
k=1

Fk (a) Λ4 k

We know that the moduli space,MΛ, is a complex u-plane with three
singularities, whose meaning is by now clear.

We know which are the good local coordinates for the patches including
each singularity.

We know the BPS spectrum of the theory, Z (n,m) = n a + m aD.

We know that the gauge coupling reads, in the semiclassical patch:

τ(a 2) =
i
π

[
3 + log

(
a 2

Λ2

)]
+

1
2πi

∞∑
k=1

Fk
′′(a) Λ4 k

and, when going to the remaining patches, it should be transformed as a
modular parameter of S`(2,Z). Its imaginary part is positive.
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The Seiberg-Witten solution

Taking into account all of the above, Nathan Seiberg and Edward Witten gave,
in 1994, the exact answer:

? The gauge coupling, τ(a 2), is the period matrix of an elliptic curve.

? The elliptic curve is constructed in terms of P2(λ) = λ2 − u, and Λ,

y2 = P2
2 (λ)− 4Λ4 = (λ2 − u)2 − 4Λ4 = (λ2 − u − 2Λ2)(λ2 − u + 2Λ2)

That is, y2 = y+ y−,

y = (λ− e+
1 (u,Λ))(λ− e+

2 (u,Λ))(λ− e−1 (u,Λ))(λ− e−2 (u,Λ))

with four branch points e±1 =
√

u ± 2Λ2, e±2 = −
√

u ± 2Λ2.

? The curve degenerates whenever two branch points meet,

∆Λ = ∆+
Λ ∆−Λ =

∏
i<j

(e+
i − e+

j )2 (e−i − e−j )2 = (2Λ)8(u + 2Λ2)(u − 2Λ2)
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The Seiberg-Witten solution

Now, recall that ∆0(ū) = 4ū led to the classical singular locus Σ0 = ū.

Notice that ∆±Λ (u,Λ) ∝ ∆0(u ± 2Λ2). The singular locus, hence, is

ΣΛ(u,Λ) = Σ0(u + 2Λ2) ∪ Σ0(u − 2Λ2)

Two singularities at u = ±u0 = ±2Λ2, consistent with the classical limit.

? There is a special meromorphic differential, dλSW ,

dλSW = dλSW (u,Λ) :=
λP ′2(λ)

y
dλ =

λP ′2(λ)√
P2

2 (λ)− 4Λ4
dλ

that leads us to the quantities a(u) and aD(u) through its periods

a(u) =

∮
A

dλSW aD(u) =

∮
B

dλSW := F ′(a)

This provides an implicit expression for the exact Wilsonian F(a).
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The BPS spectrum

The BPS spectrum is obtained by integrating dλSW along non-trivial cycles of
the torus, ν(n,m) = n · A + m · B,

A
1

B
1

e
1

-

e
2

-
e
2

+

e
1

+ e
1

-

e
2

-
e
2

+

e
1

+

!
2!

1

Fig. 1.1.a Fig. 1.1.b

M(n,m) =
√

2 |Z (n,m)| =
√

2 |n · a + m · aD| =
√

2
∣∣∣∣ ∮
ν

dλSW

∣∣∣∣
The symplectic group S`(2,Z) acts on the homology basis as it does on the
periods (a,aD): duality group translates into the modular group of the torus.

Appart from the mass, what remains invariant is the intersection number of
two BPS states, ν(n,m) ∩ ν′(n′,m′) = n ·m′ − n′ ·m, which is an integer.
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The BPS spectrum

This is the standard Dirac-Schwinger-Zwanzinger quantization condition for
the possible electric and magnetic charges of dyons.

Two dyons are mutually local if they don’t intersect ⇒ there is a symplectic
basis such that both states look purely electrically (or magnetically) charged,

ν(n,0) ∩ ν′(n′,0) = 0

At the singularities, u = ±2Λ2, two of the four branch points, e±1 =
√

u ± 2Λ2

and e±2 = −
√

u ± 2Λ2, degenerate,

A
1

B
1

e
1

-

e
2

-
e
2

+

e
1

+ e
1

-

e
2

-
e
2

+

e
1

+

!
2!

1

Fig. 1.1.a Fig. 1.1.bThis corresponds to the ν1-cycle or the ν2-cycle shrinking to zero size.

Massless BPS states
at the singularities
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The BPS spectrum

These are the vanishing cycles. Expanding, ν(n,m) = n ·A + m ·B, allows us to
read the quantum numbers of the BPS states becoming massless at u = ±u0.

The points of the singular locus can be understood as follows:

u = 2Λ2, e−1 = e−2 . The B1-cycle shrinks to zero. This means aD = 0.
This corresponds to a magnetic monopole becoming massless.

u = −2Λ2, e+
1 = e+

2 . The (−2A1 + B2)-cycle, shrinks, thus (aD − 2 a ) = 0.
It corresponds to a dyon.

Notice that this scheme also reproduces the classical BPS spectrum. Indeed,
when Λ→ 0, the curve y2 = P2

2 (λ)− 4Λ4 → y = P2(λ) = (λ− e1)(λ− e2),

dλSW →
λP ′2(λ)

P2(λ)
dλ =

2∑
i=1

λ

λ− ei
dλ ⇒ za =

∮
ν

dλSW = e1 − e2 = 2a

where ν is an eight-shaped cycle surrounding both roots and M =
√

2 |za|.
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The Seiberg-Witten solution

With the help Seiberg-Witten 1-form, dλSW , we can compute the cycles

aD(u) =

∮
B1

dλSW =
i
2

Λ

(
u2

4Λ4 − 1
)

2F1

(
3
4
,

3
4
,2; 1− u2

4Λ4

)

a(u) =

∮
A1

dλSW =
2

1 + i
Λ

(
1− u2

4Λ4

)1/4

2F1

(
−1

4
,

3
4
,1;

1
1− u2

4Λ4

)

where 2F1 is the standard hypergeometric function. Inverting a(u) is not an
easy job but certainly can be done as a series for large a/Λ yielding

u = a 2 +
1
2

(
Λ4

a 2

)
+

5
32

(
Λ8

a 6

)
+ · · ·

After inserting this into aD(u) one obtains, by integration with respect to a,

F(a) =
i

2π
a 2
[
log
(

a 2

Λ2

)
+ 2 log 2− 3− 1

4
Λ4

a 4 −
5

128
Λ8

a 8 −
3

128
Λ12

a 12 − · · ·
]
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Physics in the vicinity of a singularity

How to proceed close to the singularity aD = 0?

There is a BPS massless monopole multiplet, M, M̃, at that point that has
been wrongly integrated out.

We have to incorporate it, once again, into our Wilsonian description,

L =

∫
d4θ

(
M†e−2VD M + M̃e2VD M̃†

)
+
√

2
∫

d2θ M̃ ΦD M + LQMD

where we used the fact that the monopole is an N = 2 hypermultiplet.

Let us analyze the effect of turning on a bare mass m for Φ, by adding

W (Φ) = m Tr Φ2

that naturally undertakes the supersymmetry breaking, N = 2→ N = 1.

Tr Φ2 is a chiral superfield U; scalar component is u = 〈Trφ2〉. If m2 � u, the
Wilsonian effective action simply receives a contribution W (u) = m u.
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Monopole condensation and confinement

This term lifts the vacuum degeneracy. In order to have mass gap, extra light
charged fields should condense, and this happens at the singularities.

Near the point at which there is a massless monopole, aD ' 0, we go to a
dual description of the theory and introduce the monopole superfield,

Weff =
√

2 aD M M̃ + m u(aD)

We shall find solutions of dWeff = 0:

If m = 0, then M = M̃ = 0, and aD is arbitrary.

If m 6= 0, then aD M = aD M̃ = 0, and
√

2 M M̃ + m u′(aD) = 0.
Hence, if u′(aD) 6= 0, aD = 0 and monopoles condense,

M = M̃ =

(
− m√

2
u′(0)

)1/2

confinement being triggered since M is charged: its vacuum expectation
value generates a mass for the gauge field.
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N = 4 supersymmetric Yang-Mills theory

As mentioned above, N = 4 is the maximum amount of supersymmetry for a
QFT without gravity in four dimensions.

Similar to what we saw earlier, the N = 4 vector multiplet can be written in
terms of an N = 2 chiral multiplet and an N = 2 hypermultiplet; thus, it has
4 Weyl fermions and 3 complex scalars.

The Lagrangian is unique and given by

L = Tr
[
− 1

2g2 FµνFµν +
θ

8π2 Fµν F̃µν −
∑

a

iλ̄aσ̄µDµλa −
∑

i

DµX iDµX i

+
∑
a,b,i

g Cab
i λa [X i , λb] +

∑
a,b,i

g C̄iabλ̄
a [X i , λ̄b] +

g2

2

∑
i,j

[X i ,X j ]2
]

The theory is conformal

β(g) = µ
dg
dµ

= − g3

16π

(
11
3
− 2

3
× 4− 1

3
× 3
)

C2(G) = 0
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N = 4 supersymmetric Yang-Mills theory

The only object you can play with is the coupling constant parameter τ ,

τ =
θ

2π
+

4πi
g2

The theory is not only renormalizable but finite: perturbative quantization does
not lead to UV divergences in the correlation functions. Instanton corrections
also lead to finite contributions.

? So-called S-duality: S`(2,Z) is a symmetry at the quantum level

τ → a τ + b
c τ + d

a,b, c,d ∈ Z

In particular, τ → −1/τ (strong/weak coupling duality).

? The Lagrangian is scale invariant (all terms are of dimension 4). Now,

Scale invariance + Poincare invariance +N = 4 SUSY = SU(2,2|4)

The superconformal group SU(2,2|4) is a quantum mechanical symmetry.
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