1 Spinors

We will use the metric convention:

$$g^{\mu\nu} = (1, -1, -1, -1) . {(1.1)}$$

We will also use the Weyl representation of the Dirac spinors:

$$\gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix} , \qquad (1.2)$$

where σ^{μ} and $\bar{\sigma}^{\mu}$ are the following 2×2 matrices:

$$\sigma^{\mu} = (\sigma^0, \sigma^i) , \qquad \bar{\sigma}^{\mu} = (\sigma^0, -\sigma^i) , \qquad (1.3)$$

with σ^i being the Pauli matrices that satisfy the relation:

$$\sigma^i \sigma^j = \delta^{ij} + i \epsilon^{ijk} \sigma^k \ . \tag{1.4}$$

The matrices σ^{μ} and $\bar{\sigma}^{\nu}$ satisfy the relations:

$$\sigma^{\mu}\bar{\sigma}^{\nu} + \sigma^{\nu}\bar{\sigma}^{\mu} = 2g^{\mu\nu} , \qquad \bar{\sigma}^{\mu}\sigma^{\nu} + \bar{\sigma}^{\nu}\sigma^{\mu} = 2g^{\mu\nu} .$$
 (1.5)

Let us define:

$$\gamma_5 \equiv i\gamma^0 \gamma^1 \gamma^2 \gamma^3 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} . \tag{1.6}$$

In this representation the upper [bottom] two components have left [right] chirality:

$$\Psi = \Psi_L + \Psi_R \,, \tag{1.7}$$

with

$$\Psi_L = \left(\frac{1 - \gamma_5}{2}\right) \Psi , \qquad \Psi_R = \left(\frac{1 + \gamma_5}{2}\right) \Psi . \qquad (1.8)$$

Let us represent Ψ in terms of two-component spinors as:

$$\Psi = \begin{pmatrix} \psi_{\alpha} \\ \bar{\chi}^{\dot{\alpha}} \end{pmatrix} . \tag{1.9}$$

Then, the left and right chirality spinor fields are:

$$\Psi_L = \begin{pmatrix} \psi_{\alpha} \\ 0 \end{pmatrix} , \qquad \Psi_R = \begin{pmatrix} 0 \\ \bar{\chi}^{\dot{\alpha}} \end{pmatrix} . \qquad (1.10)$$

The Dirac conjugate is defined as:

$$\bar{\Psi} \equiv \Psi^{\dagger} \gamma^0 \ . \tag{1.11}$$

With our conventions we have:

$$\bar{\Psi} = (\bar{\chi}^{\dot{\alpha}\dagger}, \psi^{\dagger}_{\alpha}) \tag{1.12}$$

Let us define

$$\bar{\psi}_{\dot{\alpha}} = \left[\psi_{\alpha}\right]^{\dagger}, \qquad \chi^{\alpha} = \left[\bar{\chi}^{\dot{\alpha}}\right]^{\dagger}.$$
 (1.13)

Then

$$\bar{\Psi} = (\chi^{\alpha}, \bar{\psi}_{\dot{\alpha}}). \tag{1.14}$$

Raising and lowering undotted and dotted indices can be done with the matrices

$$\epsilon_{\alpha\beta} = \epsilon_{\dot{\alpha}\dot{\beta}} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = i\sigma^2, \qquad \epsilon^{\alpha\beta} = \epsilon^{\dot{\alpha}\dot{\beta}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = -i\sigma^2.$$
(1.15)

They satisfy:

$$\epsilon^{\gamma\alpha} \epsilon_{\alpha\lambda} = \delta^{\gamma}_{\lambda}, \qquad \epsilon^{\dot{\gamma}\dot{\alpha}} \epsilon_{\dot{\alpha}\dot{\lambda}} = \delta^{\dot{\gamma}}_{\dot{\lambda}}.$$
(1.16)

One has:

$$\chi_{\alpha} = \epsilon_{\alpha\beta} \chi^{\beta} , \qquad \chi^{\alpha} = \epsilon^{\alpha\beta} \chi_{\beta} ,$$

$$\bar{\psi}^{\dot{\alpha}} = \epsilon^{\dot{\alpha}\dot{\beta}} \bar{\psi}_{\dot{\beta}} , \qquad \bar{\psi}_{\dot{\alpha}} = \epsilon_{\dot{\alpha}\dot{\beta}} \bar{\psi}^{\dot{\beta}} .$$
 (1.17)

So, for example:

$$\chi^1 = -\chi_2 \; , \qquad \chi^2 = \chi_1 \; . \tag{1.18}$$

1.1 Charge conjugation

In Dirac theory the charge conjugated Dirac spinor is given by:

$$\Psi^c = C\bar{\Psi}^T \,, \tag{1.19}$$

where C is a matrix that must satisfy:

$$C\gamma_{\mu}^{T} C^{-1} = -\gamma_{\mu} . {1.20}$$

We will take the matric C as:

$$C = -i\gamma^0 \gamma^2 = \begin{pmatrix} i\sigma^2 & 0\\ 0 & -i\sigma^2 \end{pmatrix} . \tag{1.21}$$

In terms of two-component spinors the charge conjugate of Ψ is:

$$\Psi^c = \begin{pmatrix} \chi_\alpha \\ \bar{\psi}^{\dot{\alpha}} \end{pmatrix} . \tag{1.22}$$

A Majorana spinor satisfies the property of self-conjugation:

$$\Psi_M = \Psi_M^c \ . \tag{1.23}$$

One can prove that this is equivalent to be of the form:

$$\Psi_M = \begin{pmatrix} \chi_\alpha \\ \bar{\chi}^{\dot{\alpha}} \end{pmatrix} = \begin{pmatrix} \chi \\ -i\sigma_2 \,\chi^* \end{pmatrix} . \tag{1.24}$$

1.2 Lorentz invariance

A Dirac spinor is transformed under a Lorentz transformation as:

$$\Psi \to S \Psi , \qquad (1.25)$$

where S is the following matrix:

$$S = e^{-\frac{i}{4}\omega_{\mu\nu}\Sigma^{\mu\nu}} \,, \tag{1.26}$$

and $\Sigma^{\mu\nu}$ is:

$$\frac{1}{2}\Sigma^{\mu\nu} = \frac{i}{4}[\gamma^{\mu}, \gamma^{\nu}] = \begin{pmatrix} i\sigma^{\mu\nu} & 0\\ 0 & i\bar{\sigma}^{\mu\nu} \end{pmatrix} , \qquad (1.27)$$

with $\sigma^{\mu\nu}$ and $\bar{\sigma}^{\mu\nu}$ being given by:

$$(\sigma^{\mu\nu})_{\alpha}^{\ \beta} \equiv \frac{1}{4} \left(\sigma^{\mu} \bar{\sigma}^{\nu} - \sigma^{\nu} \bar{\sigma}^{\mu} \right)_{\alpha}^{\ \beta} , \qquad (\bar{\sigma}^{\mu\nu})_{\ \dot{\beta}}^{\dot{\alpha}} \equiv \frac{1}{4} \left(\bar{\sigma}^{\mu} \sigma^{\nu} - \bar{\sigma}^{\nu} \sigma^{\mu} \right)_{\ \dot{\beta}}^{\dot{\alpha}} . \tag{1.28}$$

These expressions are consistent with the following index structures:

$$(\sigma^{\mu})_{\alpha\dot{\alpha}}$$
, $(\bar{\sigma}^{\mu})^{\dot{\alpha}\alpha}$. (1.29)

This index assignment is also consistent with the property:

$$(\bar{\sigma}^{\mu})^{\dot{\alpha}\alpha} = \epsilon^{\dot{\alpha}\dot{\beta}} \epsilon^{\alpha\beta} \sigma^{\mu}_{\beta\dot{\beta}} \ . \tag{1.30}$$

We now define M as:

$$M = e^{\frac{1}{2} \,\omega_{\mu\nu} \,\sigma^{\mu\nu}} \,. \tag{1.31}$$

It satisfies

$$(M^{\dagger})^{-1} = e^{\frac{1}{2} \omega_{\mu\nu} \bar{\sigma}^{\mu\nu}} . \tag{1.32}$$

S can be written in terms of M as:

$$S = \begin{pmatrix} M & 0 \\ 0 & (M^{\dagger})^{-1} \end{pmatrix} . \tag{1.33}$$

This implies that the different two-component spinors transform as:

$$\psi_{\alpha} \to [M\psi]_{\alpha} , \qquad \qquad \psi^{\alpha} \to [\psi M^{-1}]^{\alpha} ,$$

$$\bar{\chi}^{\dot{\alpha}} \to \left[\left(M^{\dagger} \right)^{-1} \bar{\chi} \right]^{\dot{\alpha}}, \qquad \bar{\chi}_{\dot{\alpha}} \to \left[\bar{\chi} M^{\dagger} \right]_{\dot{\alpha}}.$$
(1.34)

It follows that $\psi^{\alpha}\chi_{\alpha}$ and $\bar{\psi}_{\dot{\alpha}}\bar{\chi}^{\dot{\alpha}}$ are scalars. We shall denote:

$$\chi \psi \equiv \chi^{\alpha} \psi_{\alpha} , \qquad \bar{\chi} \bar{\psi} \equiv \bar{\chi}_{\dot{\alpha}} \bar{\psi}^{\dot{\alpha}} .$$
 (1.35)

Notice that:

$$\chi^{\alpha} \psi_{\alpha} = -\chi_{\alpha} \psi^{\alpha} , \qquad \bar{\chi}_{\dot{\alpha}} \bar{\psi}^{\dot{\alpha}} = -\bar{\chi}^{\dot{\alpha}} \bar{\psi}_{\dot{\alpha}} . \qquad (1.36)$$

For anticommuting spinors one has:

$$\chi \psi = \psi \chi , \qquad \bar{\chi} \bar{\psi} = \bar{\psi} \bar{\chi} . \tag{1.37}$$

The 4×4 matrix S that implements Lorentz transformations on the four-component Dirac spinors satisfies:

$$S^{-1} \gamma^{\mu} S = \Lambda^{\mu}_{\nu} \gamma^{\nu} . \tag{1.38}$$

It follows that the 2×2 matrix M satisfies:

$$M^{-1} \sigma^{\mu} (M^{\dagger})^{-1} = \Lambda^{\mu}_{\ \nu} \sigma^{\nu} , \qquad M^{\dagger} \bar{\sigma}^{\mu} M = \Lambda^{\mu}_{\ \nu} \bar{\sigma}^{\nu} .$$
 (1.39)

Then:

$$\psi^{\alpha} \left(\sigma^{\mu} \right)_{\alpha \dot{\alpha}} \bar{\chi}^{\dot{\alpha}} = \psi \, \sigma^{\mu} \bar{\chi} \quad \text{is a vector}$$
 (1.40)

$$\bar{\chi}_{\dot{\alpha}} (\bar{\sigma}^{\mu})^{\dot{\alpha}\alpha} \psi_{\alpha} = \bar{\chi} \bar{\sigma}^{\mu} \bar{\psi} \text{ is a vector}$$
 (1.41)

1.3 Spinor identities

When computing the complex conjugate of fermionic bilinears the identities that follow are very useful:

$$(\psi \chi)^{\dagger} = \bar{\chi} \bar{\psi} , \qquad (\bar{\psi} \bar{\chi})^{\dagger} = \chi \psi ,$$

$$(\chi \sigma^{\mu} \bar{\psi})^{\dagger} = \psi \sigma^{\mu} \bar{\chi} , \qquad (\bar{\psi} \sigma^{\mu} \chi)^{\dagger} = \bar{\chi} \bar{\sigma}^{\mu} \psi . \qquad (1.42)$$

One can also exchange the order of spinors in a blilinear by means of the identities:

$$\psi \, \sigma^{\mu} \, \bar{\chi} \, = \, -\bar{\chi} \, \bar{\sigma}^{\mu} \, \psi \, \, ,$$

$$\chi \, \sigma^{\mu\nu} \, \psi \, = \, -\psi \, \sigma^{\mu\nu} \, \chi \, , \qquad \qquad \bar{\chi} \, \bar{\sigma}^{\mu\nu} \, \bar{\psi} \, = \, -\bar{\psi} \, \bar{\sigma}^{\mu\nu} \, \bar{\chi} \, .$$
 (1.43)

Working in superspace with coordinates θ and $\bar{\theta}$ one frequently uses the Fierzing identities:

$$\theta^{\alpha} \theta^{\beta} = -\frac{1}{2} \epsilon^{\alpha\beta} \theta \theta , \qquad \theta_{\alpha} \theta_{\beta} = \frac{1}{2} \epsilon_{\alpha\beta} \theta \theta ,$$

$$\bar{\theta}^{\dot{\alpha}} \bar{\theta}^{\dot{\beta}} = \frac{1}{2} \epsilon^{\dot{\alpha}\dot{\beta}} \bar{\theta} \bar{\theta} , \qquad \bar{\theta}_{\dot{\alpha}} \bar{\theta}_{\dot{\beta}} = -\frac{1}{2} \epsilon_{\dot{\alpha}\dot{\beta}} \bar{\theta} \bar{\theta} ,$$

$$\theta \psi \theta \chi = -\frac{1}{2} \theta \theta \psi \chi , \qquad \bar{\theta} \bar{\psi} \bar{\theta} \bar{\chi} = -\frac{1}{2} \bar{\theta} \bar{\theta} \bar{\psi} \bar{\chi} . \qquad (1.44)$$

From the completeness property of the σ -matrices:

$$\left(\sigma^{\mu}\right)_{\alpha\dot{\alpha}}\left(\bar{\sigma}_{\mu}\right)^{\dot{\beta}\beta} = 2\,\delta^{\beta}_{\alpha}\,\delta^{\dot{\beta}}_{\dot{\alpha}}\,,\tag{1.45}$$

we get:

$$\theta^{\alpha} \,\bar{\theta}^{\dot{\alpha}} \,=\, \frac{1}{2} \left(\,\bar{\sigma}^{\mu}\,\right)^{\dot{\alpha}\alpha} \,\theta \sigma_{\mu} \,\bar{\theta} \,\,. \tag{1.46}$$

Also:

$$\theta \sigma^{\mu} \bar{\theta} \ \theta \sigma^{\nu} \bar{\theta} = \frac{1}{2} \theta \theta \ \bar{\theta} \bar{\theta} g^{\mu\nu} \ . \tag{1.47}$$

Another useful properties are:

$$\epsilon^{\alpha\beta} \frac{\partial}{\partial \theta^{\beta}} = -\frac{\partial}{\partial \theta_{\alpha}}, \qquad \epsilon^{\dot{\alpha}\dot{\beta}} \frac{\partial}{\partial \theta^{\dot{\beta}}} = -\frac{\partial}{\partial \theta_{\dot{\alpha}}}.$$
(1.48)

1.4 Properties of Pauli matrices

The traces of σ matrices are given by:

$$\operatorname{Tr}\left[\sigma^{\mu}\bar{\sigma}^{\nu}\right] = 2g^{\mu\nu},$$

$$\operatorname{Tr}\left[\sigma^{\mu\nu}\sigma^{\rho\sigma}\right] = \frac{1}{2}\left(g^{\mu\sigma}g^{\nu\rho} - g^{\mu\rho}g^{\nu\sigma} + i\epsilon^{\mu\nu\rho\sigma}\right),$$

$$\operatorname{Tr}\left[\bar{\sigma}^{\mu\nu}\bar{\sigma}^{\rho\sigma}\right] = \frac{1}{2}\left(g^{\mu\sigma}g^{\nu\rho} - g^{\mu\rho}g^{\nu\sigma} + i\epsilon^{\mu\nu\rho\sigma}\right).$$
(1.49)

The hermitian conjugate of the σ matrices are given by:

$$\sigma^{\mu\dagger} = \sigma^{\mu} , \qquad \bar{\sigma}^{\mu\dagger} = \bar{\sigma}^{\mu} , \qquad \sigma^{\mu\nu\dagger} = -\bar{\sigma}^{\mu\nu} . \qquad (1.50)$$

The transposes of the σ 's are obtained by conjugating with σ^2 :

$$\sigma^{\mu T} = \sigma^2 \bar{\sigma}^{\mu} \sigma^2 , \qquad \bar{\sigma}^{\mu T} = \sigma^2 \sigma^{\mu} \sigma^2 ,$$

$$(\sigma^{\mu\nu})^T = -\sigma^2 \sigma^{\mu\nu} \sigma^2 , \qquad (\bar{\sigma}^{\mu\nu})^T = -\sigma^2 \bar{\sigma}^{\mu\nu} \sigma^2 . \qquad (1.51)$$