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Caṕıtulo 1

Non perturbative aspects of N=1
Supersymmetric Theory

1.1. SU(Nc)-QCD with Nf flavours.

Let us start by defining the class of microscopic models we will be dealing with in this
course. They represent the minimal supersymmetric extension of QCD, and hence receive
the generic name of SQCD.

1.1.1. Field Content

Chiral Matter.

A single flavour is composed of a pair of chiral superfields (Qi, Q̃i), i = 1, ..., Nc.
With yµ = xµ − iθσµθ̄

Qi(x, θ, θ̄) = φi(y) +
√

2θψi(y) + θ2F i(y)

Q̃i(x, θ, θ̄) = φ̃i(y) +
√

2θψ̃i(y) + θ2F̃i(y)

The component fields receive the generic names of squark (φi), and quark fields
(ψiα, ψ̃α i).

Gauge Fields

In the Wess Zumino gauge V = TaW
a = V † can be expanded as

V a(x, θ, θ̄) = θσµθ̄Aaµ(x) + iθ2(θ̄λ̄a)− iθ̄2(θλ)a +
1

2
θ2θ̄2D2(x) (1.1)

in terms of a gaugino (λaα, λ̄
aα̇), and a gauge boson Aaµ. The gauge invariant field

strength

Wα(x, θ, θ̄) = −1

4
D̄2e−2VDαe

2V (1.2)

=
(
−iλa(y) + θαD

a(y)− i(σµνθ)αF aµν(y)− θ2σµαα̇(Dµλ̄α̇)a(y)
)
Ta

(1.3)
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is a chiral superfield, i.e. D̄W = 0. From here

TrW 2
∣∣
θ2

= −1

2
FµνFµν + 2iλaσµDµλ̄a +D2 +

i

2
F ∗µνF

µν (1.4)

hence

1

4g2
(TrW 2

∣∣
θ2

+ h.c.) = − 1

4g2
FµνFµν +

i

g2
λσµDµλ̄a +

1

2g2
D2

−i θ

32π2
(TrW 2

∣∣
θ2
− h.c.) =

θ

32π2
F ∗µνF

µν (1.5)

with

F ∗µν =
1

2
εµναβF

αβ

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ]

Dµλ̄α̇ = ∂µλ̄
α̇ + [Aµ, λ̄

α̇] (1.6)

The gauge transformation of the different fields that enter is given in terms of a chiral
superfield Λij = Λa(Ta)

i
j and its antichiral hermitian conjugate Λ† = Λ†aT †a = Λ†aTa

- Qi transforms in the Nc

Qi → (e−2iΛ)ijQ
j ; Q†j = Q†i (e

2iΛ†)ij (1.7)

- Q̃i transforms in the N̄c, or 1

Q̃i → Q̃i(e
2iΛ)ij ; Q̃†i → (e−2iΛ†)ijQ̃

† j (1.8)

- e2V transforms in the adjoint (Nc, N̄c) representation

e2V → e−2iΛ†e2V e2iΛ ; e−2V → e−2iΛe−2V e2iΛ† (1.9)

so that the combination Q†e2VQ + Q̃e−2V Q̃† is gauge invariant. Also for the chiral field
strength, using [D̄α̇, eiΛ] = [Dα, e

iΛ̄] = 0 we find

Wα = −1

8
D̄2e−2VDαe

2V =⇒ Wα → e−2iΛWαe
2iΛ

W̄α̇ = −1

8
D2e2V D̄α̇e

−2V =⇒ W̄α̇ → e−2iΛ†Wαe
2iΛ† (1.10)

1Remember that given a representation D(g)D(g′) = D(gg′) of a group, automatically we have two
new ones, D(g)∗ and D(g)−1t which in principle are inequivalent. The associated Lie algebra D(g) =
1 + iαiD(Li) + ... has correspondingly inequivalent representations −Dt, D(g)−1t = 1− iαiDt(Li) + ... and
D(g)∗ ∼ 1 − iαiD∗(Li) + ... . With D(Li) hermitian D(Li)t = D(Li)∗, these are equivalent only for real
parameters αi ∈R. However, for general gauge transformations the parameter functions in (1.7) are chiral
superfields Λ 6= Λ∗. Hence by N̄c we must specify what we mean, and the choice is D−1t, whence (1.8).
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1.1.2. Action and symmetries

The action can be written in superspace notation as follows

L = Im

(
τ

8π
Tr

∫
d2θW 2

)
+

1

4

∫
d2θd2θ̄

(
Q†fe

2VQf + Q̃fe
−2V Q̃†f

)
+ (

∫
d2θW(Qf , Q̃f ) + h.c.)

(1.11)

where we have extended our chiral superfields to a set (Qfi, Q̃fi), i = 1, ..., Nc; f =
1, ..., Nf ,

τ =
4πi

g2
+

θ

2π
(1.12)

hence the gauge-kinetic term reads as follows

Im

8π

(
τ Tr

∫
d2θW 2

)
=

1

4g2

(∫
dθ2 TrW 2 + h.c.

)
− i θ

32π2

(∫
dθ2TrW 2 − h.c.

)
= Tr

(
− 1

4g2
FµνF

µν +
i

g2
λσµDµλ̄+

1

2g2
D2 +

θ

32π2
F̃µνF

µν

)
(1.13)

The superpotential contains typically mass as well as higher interaction terms

W(Q, Q̃) = mg

fQ
fiQ̃gi + afghεijkQ

fiQgjQhk + ãfghεijkQ̃
fiQ̃gjQ̃hk + ... (1.14)

where afgh, ãfgh are SU(N) invariant tensors proportional to εfgh [1] p.31. However these
higher terms violate baryon number conservation.

1.1.2.1 Scalar Potential

V =

N2
c−1∑
a=1

|Da|2 +
∑
f

(|FQf |2 + |FQ̃f |
2)

=
1

2

N2
c−1∑
a=1

|φ∗fT aφf − φ̃fT aφ̃∗f |2 +
∑
f,i

(
∂W
∂φfi

∂W̄
∂φ†fi

+ (φ↔ φ̃)

)
(1.15)

1.1.2.2 Global symmetries

In the absence of superpotential (W = 0) → U(Nf ) × U(Nf ) × U(1)R ∼ SU(Nf ) ×
SU(Nf )× U(1)B × U(1)R × U(1)A.

SU(Nf )L SU(Nf )R UB(1) UA(1) UR(1)

V 0 0 0 0 0

Qf Nf 0 1 1 0

Q̃f 0 N̄f -1 1 0
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U(1)R is a geometrical symmetry

(θ, θ̄) → (eiαθ, e−iαθ̄),

(dθ, dθ̄) → (e−iαdθ, eiαdθ̄)

thus although the chiral superfields are neutral, the higher components inside are charged.
In the presence of a superpotential of the form (1.14) and vanishing trilinear couplings,
the global symmetry reduces to SU(N)V × U(1)B in the case of diagonal equal masses
mfg = mδf g and to U(1)B for generic mf

g.

1.1.2.3 Theta term

The gauge kinetic term (1.13) contains a θ-term. Remember that θ is a periodic variable.
In other words θ → θ+2π is a symmetry of the quantum theory. This is because spacetime
integral of this term computes the“winding number” of the gauge field at infinity. Namely,
there exist non-trivial gauge field configurations for which

θ

32π2

∫
d4xF̃F = nθ (1.16)

with n an integer. Thus, although strictly speaking θ → θ+ 2π is not a symmetry of S, it
shifts trivialy the phase factor in the path integral.

1.2. SQCD Classical Moduli Space: M0

1.2.1. Classical Moduli Spaces

A common feature of supersymmetric models is the existence of a large amount of va-
cua, spanning continuous manifolds which generically receive the name of “moduli space”.
Moreover, as we shall see, quantum corrections do not generically lift this degeneracy of
vacuum states. This is unlike non-supersymmetric theories, for which vacua are usually dis-
crete sets of points. The vacuum condition is simply V = 0. The spaceM0 is in many cases
not a manifold, but rather a set of manifold or ”branches”, often joined along subspaces of
lower dimension.

As an example consider a model with 3 chiral multiplets X, Y and Z, and a superpotential
W = λXY Z. The susy vacuum condition states that xy = xz = yz = 0 for the scalar
component. So we find 3 branches, those are (y = z = 0 with x arbitrary) and cyclic
permutations x→ y → z → x of the same statement. The three branches join at a single
point x = y = z which is a singular point of W (all its gradients vanish).

1.2.2. M0(SQCD)

Let us start by examining this manifold in the case of the lagrangian (1.11) with a vanishing
superpotential to start with. Later on we will consider the quantum modification of this
lagrangian, and we will show that nonperturbative effects allow for the appearance of a
nontrivial W.
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With W = 0, the vacuum conditions can be read from setting V = 0 in (1.15), and
therefore they also are called D-flatness conditions∑

a

|Da|2 =
∑
a

|φ∗fT aφf − φ̃fT aφ̃∗f |2 = 0 (1.17)

The solution to these algebraic equations fall into three categories, whether Nf < Nc,
Nf = Nc, Nf = Nc + 1 or Nf > Nc + 1. Let us examine them case by case.

Nf < Nc: Performing an SU(Nf ) × SU(Nc) rotation we may bring φfi and φ̃fi to
the form

φfi = afδ
fi =

Nc︷ ︸︸ ︷
a1 0 · · · 0 · · ·
0 a2 · · · 0 · · ·
· · · · · · · · · · · · · · ·
0 0 · · · aNf · · ·


Nf (1.18)

and the same for φ̃fi = ãfδfi. Hence (1.17) yields

∑
a

Nf<Nc∑
f=1

(
|af |2 − |ãf |2

)
(T a)f f = 0 (1.19)

This has the generic solution

|af | = |ãf |, f = 1, ..., Nf . (1.20)

For generic af 6= 0, f = 1, ...Nf SU(Nc) breaks down to SU(Nc − Nf ). Now the
question is what kind of quantity describes this D-flat moduli space. In other words,
what degrees of freedom are the relevand ones at low energies. Since a spontaneo-
us symmetry breaking is at work the natural guess is that of N2

f gauge invariant
composite chiral “meson”superfields (Goldstone supermodes)

Mf
g = QfiQ̃gi, f, g = 1, ...., Nf . (1.21)

whose vacuum expectation values parametrize the vacuum manifold.

〈Mf
g〉 = diag(a2

1, a
2
2, ..., a

2
Nf

). (1.22)

The counting matches. We started with 2NcNf massless chiral superfields Qf and
Q̃g, and ended up with N2

f modes Mf
g. The difference is the number of degrees of

freedom (Goldstone modes) that have been eaten up in the Higgs mechanism, which
is also the number of particles becoming massive

SU(Nc)︷ ︸︸ ︷
(N2

c − 1)−

SU(Nc−Nf )︷ ︸︸ ︷
(Nc −Nf )2 − 1 =

Higgsed modes︷ ︸︸ ︷
(2NcNf −N2

f ) (1.23)
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Nf ≥ Nc. In this case, the best one can do is bring the chiral superfields to the form

φfi = aiδ
fi =

Nc︷ ︸︸ ︷

a1 0 · · · 0
0 a2 · · · 0
· · · · · · · · · · · ·
0 0 · · · aNf
0 0 · · · 0
· · · · · · · · · · · ·




Nf (1.24)

and the same for φ̃gi = ãgδgi. In this case the D-flatness condition (1.17) is the same

but now with Nf ≥ Nc. Given the tracelesness of the gauge generators
∑Nc

i=1(T a)ii =
0, the generic solution of (1.203) is given by

|af |2 − |ãf |2 = v2 , ∀f = 1, ..., Nf (1.25)

Now the gauge group is completely broken at a generic point on moduli space. The
gauge invariant condensates that can be formed are now

Mf
g = QfiQ̃gi (1.26)

B[f1...fNc ] = Qf1i1 ... QfNc iNc εi1...iNc (1.27)

B̃[f1...fNc ] = Q̃f1i1 ... Q̃fNc iNc ε
i1...iNc . (1.28)

The“baryon” indices are automatically antisymmetrized in flavor space. In total they
are

N2
f + 2CNcNf = N2

f +
2Nf !

Nc!(Nf −Nc)!
(1.29)

quantities, which exceeds the number of initial chiral modes minus the number of
broken generators 2NcNf − (N2

c − 1). The clue is that the previous quantities are in
some cases redundant, as can be seen by finding agebraic identities that link them.
Let us see this in the special cases Nc = Nf and Nc = Nf + 1.

Nf = Nc The matrices Qfi and Q̃fi are square matrices, and hence N2
f + 2 gauge

invariant polynomial can be formed

Mf
g = Qf Q̃g , B = detQfi , B̃ = det Q̃fi . (1.30)

However they are linked by the following trivial identity

detM = BB̃ (1.31)

So we have really N2
f + 1 moduli. Let us check the counting: SU(Nc) is completely

broken, hence N2
c − 1 = N2

f − 1 Goldstone modes have been eaten up. Since we

started from 2NcNf = 2N2
f , the difference yields precisely N2

f + 1 moduli, which are
the ones in (1.30) modulo the constraint (1.31).
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Nf = Nc + 1 In this case there are N2
f + 2Nf gauge invariant quantities It is conve-

nient to exhibit the bayonic operators (1.27) and (1.28) in the Hodge dual form

B̄g =
1

Nc!
εgf1···fNcQ

f1i1Qf2i2 · · ·QfNc iNc εi1i2···iNc (1.32)

¯̃B
g

=
1

Nc!
εgf1···fNc Q̃f1i1Q̃f2i2 · · · Q̃fNc iNc ε

i1i2···iNc (1.33)

Mf
g = Q̃fQg (1.34)

which exceeds by 2Nf the number of moduli 2NcNf − (N2
c − 1)

Nc→Nf−1
= N2

f . Again
they are not independent but satify the equalities

B̄fM
f
g = Mf

g
¯̃B
g

= 0 ; detM(M−1)f
g = B̄f

¯̃B
g

(1.35)

Indeed

B̄fM
f
g =

1

Nc!
εff1···fNcQ

f1i1Qf2i2 · · ·QfNc iNcQfjεi1i2···iNc Q̃gj = 0 (1.36)

and this vanishes because the set of indices [i1, ..., iNc , i] is antisymmetric and neces-
sarily two of them are repeated. In the second equation, the left hand side stands
short for the minor of the element Mg

f i.e. the determinant of M with the f ’th row
and g’th column deleted. This is precisely

l.h.s. =
1

Nc!
εf1···fNcgε

g1···gNcfMf1
g1 · · ·MfNc gNc

=
1

Nc!
εf1···fNcgQ

f1i1 · · ·QfNc iNc εg1···gNcfQg1i1 · · ·QgNc iNc

= εf1···fNcgQ
f11 · · ·QfNcNc εg1···gNcfQg11 · · ·QgNcNc

= B̄g
¯̃B
f

= r.h.s (1.37)

1.3. SQCD, Quantum Effective Action

The vacuum is the lowest energy state of the theory. The proper tool to investigate it
when quantum fluctuations are taken into account is the quantum effective action. There
are two concepts for such object. The standard textbook in QFT introduces it as the gene-
rating functional of 1PI correlation functions. In a more modern approach the Wilsonian
effective action links with the theory of critical phenomena and renormalisation group
analysis. Whereas the first one is plagued with infinities and must be subject to a proper
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renormalisation program, the second is finite and well defined by construction, hence we
will stick to it in what follows.

Defining a quantum field theory starts by giving a classical local action which describes the
degrees of freedom and the classical dynamics. Central to the discussion are two concepts:
the coupling constants and the cutoff scale.

Without a cutoff scale, a QFT is ill defined and plagued with infinities. The classical
renormalisation program is a way to handle these divergences. Another approach is that
of a Wilsonian effective action. A Wilsonian effective action has the following generic
aspect

S(µ) =

∫
ddx

∑
i

gi(µ)Oi (1.38)

were Oi label an infinite set of local operators (polynomials in basic fields and derivatives
thereof)

A field theory is normally defined by specifying the bare parameters in a given action
gi(µ) at some cutoff scale µ. One then makes use of this action to seed a path integral
that will produce Green’s functions which will be calculable in terms of gi(µ). Imagine
|pµ| ∼ E ≤ µ is the typical (euclidean) momentum scale of the incoming particles in the
process. Then we loosely refer to these amplitudes as Γ(E, gi(µ)). Fixing these amplitudes
to experimental values is a practical means of fixing the values of the couplings gi(µ). The
actual computation of Γ(E, gi(µ)) involves integrating over loop momenta pµ in the range
E ≤ |pµ| ≤ µ. This typically introduces logarithms log(µ/E). Hence on one side, for E = µ
the tree level result is exact, and on the other hand for E << µ the logarithms grow larger
than the tree level values and spoil the perturbative analysis.

It may therefore be convenient to define the theory at a different scale µ′ < µ such that the
tree level results better approximate the physics. This is the task of the renormalization
group, which answers to the following question: how must the parameters change in order
for the physics at scale E to remain intact?

Γ(E, gi(µ), µ) = Γ(E, g′i(µ
′), µ′) (1.39)

The dependence of gi on the defining scale µ is encoded in the Renormalization Group
Equation (RGE)

µ
dgi(µ)

dµ
= βi(gi(µ), µ)) (1.40)

As an example consider the perturbed free scalar field theory

S[φ]free =

∫
ddx

1

2
∂φ∂φ (1.41)

Clearly for this action to be invariant under µ→ µ′ = λµ and x→ x′ = λ−1x where λ < 0
(hence x growing in length) φ must scale as φ→ λφ. Hence the mass dimension [φ] = +1.
Consider an operator made out of φ and derivatives thereof such that Oi → λdiOi. We say
that Oi has classical (mass) dimension di. Next we write the perturbed action as follows

S[φ;µ, gi] =

∫
ddx

[
Z(µ)

2
∂µφ∂

µφ+
∑
i

gi(µ)Oi(x)

]
(1.42)
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For the action to be dimensionless, hence invariant under the previous scaling, the coupling
constants must have classical dimension d− di. We write gi(µ) = µd−di g̃(µ) where g̃(µ) is
dimensionless. Hence we have

µ
dgi
dµ

= (di − d)µdi−dg̃i(µ) + µd−diµ
dg̃i(µ)

dµ

= (di − d)gi(µ) + βquanti

= βi (1.43)

Of particular importance are the limits µ → ∞ (UV) and µ → 0 (IR). If there exist a
sensible limit where the couplings don’t run away, then the theory must reach a fixed
point g(µ→ 0) = g∗i . Theories at a fixed point are very special because they are scale and
even conformal invariant. They have neither dimension-full parameters nor massive states.
They are called conformal field theories (CFT).

In the neighbourhood of a fixed point CFT we have gi = g∗i + δgi and we can always
linearise the RG flows

µ
dgi
dµ

∣∣∣∣
g∗j+δgj

= Aij δgj +O(δg2
j ) (1.44)

and go to a diagonal basis δgi → δg̃i, Aij → ∆iδij such that , to linear order

µ
dδg̃i
dµ

= (∆i − d)δg̃i = βquanti (g∗) (1.45)

and so, to linear order the RG flow is simply

δg̃i(µ) =

(
µ

µ′

)∆i−d
δg̃i(µ

′) (1.46)

The quantity ∆i is called the scaling (or conformal) dimension of the operator associated
to δg̃i. It will be different, in an interacting QFT, from the classical scaling dimension di,
actually

∆i = di + γi (1.47)

where is called the anomalous dimension of the operator and its origin is purely quantum.

From (1.45) we see that, close to the fixed point, the couplings can be classified in the
following way

Relevant. If ∆i < d the coupling decreases (increases) towards the UV (IR). So in
the vicinity of a UV fixed point (µ→∞) all these couplings vanish.

Irrelevant. If ∆i > d we have just the opposite of the above. Hence as we approach a
IR fixed point (µ→ 0) all irrelevant couplings disappear, and only relevant couplings
remain.

Marginal. The case ∆i = d signals couplings which stay fixed under the RG flow.
However for them, the linearised analysis is not valid and one has to go beyond
leading order. If finally the coupling does not run to all orders, we speak of a truly
marginal coupling.

11



In summary, when building the low energy effective action, which capture the IR physics,
only relevant operators with βi < 0 are important. Moreover, they become negligible in
the UV, so the actual value they have there is actually of very little importance. The
number of relevant operators is finite, and actually very small in a supersymmetric theory.
From the perturbative point of view, relevant operators are the same as renormalizable
ones. So those for which the coupling constants have scaling dimension ∆i < 4. In a first
approximation, we can trade the full scaling dimension for the classical one ∆i ∼ di. If we
were talking about a scalar field theory this would leave us with an action of the form

S =

∫
d4x

(
1

2
(∂φ)2 +m2φ2 + βφ3 + λφ4

)
(1.48)

In superspace the counting is a little bit different. This is because the anti commuting
coordinates have scaling dimension [θ] = 1/2 but [dθ] = −1/2, given that

∫
dθθ = 1.

Hence, for an action like (1.11), appart from the kinetic terms, we are speaking of super-
potential terms which have at most dimension 3

Wrel = mijΦ
iΦj + λijkΦ

iΦjΦk . (1.49)

Quantum Vacua

In QFT, scalar fields may develop a non-trivial vacuum expectation value (VEV), 〈φi〉 = 0.
The set of all VEV’s characterises the vacuum state itself, and are determined by the
requirement that they are minima of the low energy effective potential. The low energy
effective potential is the potential of the WIlsonian effective action in the limit µ → 0,
hence after all non-zero modes of the fields have been integrated out.

1.3.1. SQCD: Renormalization Group Analysis

From (1.11) we see that typically the supersymmetric version of QCD consists of three
types of terms. Let us repeat here the tree level action, stressing the fact that it is the UV
action defined at scale µ0

L(µ0) = Im

(
τ(µ0)

8π
Tr

∫
d2θW 2

)
+ Z(µ0)

∫
d2θd2θ̄(Q†e2VQ+ Q̃e−2V Q̃†)

+ (

∫
d2θW(Q, Q̃;λi(µ0)) + h.c.)

(1.50)

We have displayed the parameters that will depend on the UV renormalization scale, which
we have called µ0. Actually it is conventional to set Z(µ0) = 1 by definition as an initial
condition.

Perturbatively, the fate of the different terms along RG flow µ0 → µ is condensed in the
following collection of statements

1. The couplings λi(µ) are invariant, hence receive no corrections.
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2. The function τ(µ) receives corrections at 1-loop in perturbation theory.

3. The function Z(µ) receives corrections from all loops in perturbation theory.

1.3.1.1 Non-renormalization theorem

From these, the most famous one is the last one, which usually goes under the name
of “non-renormalization theorem”, stating that the superpotential is not renormalized in
perturbation theory. Let us give here a proof based on symmetry arguments [2]. The
prototypical example deals with the Wess-Zumino lagrangian

S =

∫
d4θΦΦ† +

∫
d2 θ(mΦ2 + λΦ3) . (1.51)

There is no U(1)R charge assignement that makes this lagrangian invariant. However one
can play the trick of envisaging the constants m,λ as background (spurion) fields that
have acquired a v.e.v. The following charges do the job

U(1)R U(1)B

Φ 1 1
m 0 -2
λ -1 -3

(1.52)

Under RG flow, the Kähler form and the superpotential will run over to some unknown
functions

K = K(Φ,Φ†,m,m∗, λ, λ∗)

W = W(Φ,m, λ) (1.53)

In a Wilsonian setup, integrations over finite momentum intervals cannot spoil holomorp-
hicity ofW. This, together with the requirement that the effective lagrangian has the same
global symmetries restricts the form of W as

W = mΦ2f

(
λΦ

m

)
=
∑
n

anλ
nm1−nΦn+2 (1.54)

The existence of a weak coupling limit λ→ 0 restricts n ≥ 0, and continuity of the massless
limit m→ 0 implies n ≤ 1, thus

W(µ) = mΦ2 + λΦ3 =W(µ0) (1.55)

1.3.1.2 Perturbative Non-Renormalization theorem
Perturbation theory can be implemented in full superspace, by means of the su-

pergraph computation. Each such supergraph computes a contribution to the 1PI
Effective Action. An important point to stress, is the fact that all such contributions
come out with an integral over full superspace

∫
d2θd2θ̄d4p..... In other words, supers-

pace perturbation theory only produces D terms, and never F terms. Hence it will
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be only capable of giving contributions that correct the Kähler potential, but never
the superpotential. So simple is in essence the content of the famous nonrenormali-
zation theorem. Of course this only means that the parameters in the superpotential
τ,m2, λ, ... do not have renormalizations Z’s, other that the ones than come from the
wave function renormalization ZQ and ZQ̃.

1.3.1.3 Holomorphic Anomalies
In supersymmetric gauge theories and, in general, in theories with massless par-

ticles that can propagate inside the loops, some propagators may lead to infrarred
singularities in the limit kµ → 0. This offers a mechanism to evade the perturbative
non-renormalization theorem. Consider the following D-looking-term

I =

∫
d4xd2θd2θ̄

D2

�
F (Φ) (1.56)

By using the identity [D2, D̄2] ∼ � we may perform the following manipulations,
(neglect total derivatives)

I =

∫
d4x(

1

16
DαD̄2Dα −

1

4
�)
D2

�
F (Φ)

∣∣∣∣
θ=θ̄=0

=
1

16

∫
d4xDα D̄

2D2

�
DαF (Φ)

∣∣∣∣
θ=θ̄=0

=
1

16

∫
d4xDα [D̄2, D2]

�
DαF (Φ)

∣∣∣∣
θ=θ̄=0

=
1

16

∫
d4xD2F (Φ)

∣∣∣∣
θ=θ̄=0

= −1

4

∫
d4xd2θF (Φ) (1.57)

The end result goes into a correction of the superpotential. However this situation is
to be expected only in 1PI effective actions. In Wilsonian effective actions the inte-
grals in momentum are cutoff, above by the UV definition scale µ0 and below by the
renormalization scale µ. In conclusion, they never will generate a singular contribution
like (1.56). Thus, we state that a Wilsonian superpotential is never generated in per-
tubation theory. At the non-perturbative level, i.e. functions that admit an expansion
in powers of e1/g2 , the possible answers are constrained by the global symmetries.
Flavour symmetries SU(Nf )×SU(Nf ) impose to use as variables singlets like detM ,

B and B̃. U(1) symmetries are more delicate, since care of chiral anomalies must be
taken.

1.3.1.4 Anomalous dimensions from wave function renormalization

It is important to stress that the non-renormalization theorem for the couplings λi in
the superpotential has been derived under the assumption that the kinetic term is not
canonically normalized. Contrarily to the superpotential, the Kähler potential, not being
protected by holomorphy can, and indeed will, receive contributions from higher loops
that will correct it multiplicatively

K(µ) = Z(m,m∗, λ, λ∗, µ)K(µ0). (1.58)
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In order to compare theories along the RG trajectory it is always convenient to stick to
normalized kinetic terms for all the fields. In particular, for the chiral superfields this
involves a redefinition

Q =
1√

Z(µ, µ0)
Qc ; Q̃ =

1√
Z(µ, µ0)

Q̃c . (1.59)

In terms of these (Qc, Q̃c) the kinetic terms will always stay canonically normalized

L(µ) = Im

(
τ(µ)

8π
Tr

∫
d2θW 2

)
+

∫
d2θd2θ̄

(
Q†ce

2VQc + Q̃ce
−2V Q̃†c

)
+ (

∫
d2θW(Q, Q̃;λci (µ)) + h.c.) (1.60)

(1.61)

However, now the new couplings are no more RG invariant. For example for the mass term
mQQ̃ = mcQcQ̃c we would have

mc(µ) = mZ(µ, µ0)−1 (1.62)

and from here the anomalous dimension totally arises from the wave function renormali-
zation

βmc ≡
dmc(µ)

d logµ
= −mc(µ)

d logZ(µ, µ0)

d logµ
≡ −mc(µ)γ(µ) (1.63)

1.3.1.5 Perturbative Quantum Moduli Space

In this way we arrrive at the following important result: if we start from a bare lagrangian
which has a vanishing superpotential W = 0, a Wilsonian superpotential will never be
generated along a RG trajectory in perturbation theory.

Stated in a different way, the classical moduli space and the quantum moduli space, given
by solving the D flatness condition (1.203), are the same.

Reverting the logic of the argument, if a superpotential is seen to arise along an RG-
trajectory, it must necessarily come from non-perturbative effects, such as instanton con-
figurations, which introduce corrections in the effective action weighted by e1/g2 . The
possible superpotentials thus generated dynamically are only constrained by the global
unbroken symmetries. Flavor symmetries SU(Nf )L × SU(Nf )R dictate that the allowed
superpotentials must be functions of flavor singlet polynomials det(M), B or B̃. U(1)
symmetries are more delicate as they involve chiral fermions and care must be taken of
anomalies. The main aim of these lectures is the study of non-perturbatively generated
superpotentials.

1.3.2. Holomorphic β function

A Wilsonian UV action at scale µ incorporates the information about all the frequencies
at scales above µ. Hence it is only capable of describing physical quantities at lower energy
scales E ≤ µ. The computation will tipically involve integrals ranging from µ to 0, but

15



the slice between E and 0 can be included in a renormalization scheme. In this scheme,
the tree level form of the UV Wilsonian action at scale µ describes the physical processes
at energy E ' µ, up to corrections of O(logµ/E). The change of the parameters when
µ→ µ′ by construction keeps the physics at E ≤ µ′ ≤ µ invariant.

If we take the action (1.50) as the defining UV action at scale µ0, at a lower scale µ < µ0,
the form of the action is the same, with renormalized τ0 = τ(µ0)→ τ(µ).

L(µ) = Im

(
τ(µ)

8π
Tr

∫
d2θW 2

)
+ Z(µ)

∫
d2θd2θ̄(Q†e2VQ+ Q̃e−2V Q̃†)

+ (

∫
d2θW(Q, Q̃;λi(µ0)) + h.c.) (1.64)

where we have taken account of the non-renormalization theorem for the superpotential
automatically. Under and RG flow, µ0 → µ < µ0 the gauge coupling constant gets renor-
malized as

τ(µ) = τ(µ0) + f(τ0;µ, µ0) . (1.65)

In order to get hold on the possible form for f(τ0;µ, µ0) we take into consideration the
following constraints

holomorphicity: by which we mean that f(τ0;µ, µ0) is a holomorphic function of τ0.

periodicity: under shifts θ → θ+ 2πi⇒ τ0 → τ0 + 1. Then at most f(τ0 + 1;µ, µ0) =
f(τ0;µ, µ0)+n(µ, µ0) where n(µ, µ0) ∈ Z. Given the boundary condition n(µ0, µ0) =
0 by continuity we arrive at n(µ, µ0) = 0. This means f(τ0;µ, µ0) is a periodic
function under shifts θ → θ + 2πi, or f(τ0 + 1;µ, µ0) = f(τ0;µ, µ0) and we may
expand in Fourier series

τ(τ0;µ, µ0) = τ0 +
∞∑
n=0

fn

(
µ

µ0

)
e2πniτ0 (1.66)

transitivity: f0(µ′, µ0) = f0(µ′, µ)+f0(µ, µ0). This forbids to a logarithm f0(µ, µ0) =
log(µ/µ0).

In summary, fulfilling all the constraints yields an almost unique answer, and we get the
important result that the perturbative contribution is saturated at one loop

τpert(
µ

µ0
, τ0) = τ0 +

ib

2π
ln

µ

µ0
. (1.67)

and with τ = 4πi
g2

+ θ
2π , we obtain the perturbative running of the coupling constant

1

g2(µ)
=

1

g2(µ0)
+

b

8π2
log

µ

µ0
(1.68)

where b is the coefficient of the 1-loop beta function in the usual RG equation

µ
dg(µ)

dµ
= − b

16π2
g3 (1.69)
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which must be computed explicitely. One may infere it from the standard QCD result and
the field content in (1.50).

b =
11

6
T (A)− 1

3

∑
fer

T (Rfer)−
1

6

∑
sc

T (Rsc) (1.70)

where “fer” runs over Weyl fermions and “fer” over complex scalars. In N = 1 SYM,
“fer” will count the gauginos λ in the adjoint (R = A) and the 2Nf Weyl quarks ψf , ψ̃f ,,
whereas “sc”will run over the 2Nf squarks φf , φ̃f . Therefore we find

b =

(
11

6
− 1

3

)
T (A)−

2Nf∑
f=1

(
1

3
+

1

6

)
T (Rf )

=
3

2
T (A)−

Nf∑
f=1

T (Rf ) (1.71)

where T (R) = C(R)/C(F ) is the index of the representationR, and C(R)δab = tr(R(ta)R(tb)).
Tipically C(F ) = 1/2 and C(A) = N for SU(N), hence

T (R) =

{
1 R = F = Nc or N̄c of SU(Nc)
2Nc R = A = adjoint of SU(Nc)

(1.72)

and so we obtain for b

b = 3C(A)−
Nf∑
f

C(Rf ) = 3Nc −Nf . (1.73)

if all the matter falls in the fundamental representation. From (1.68) we derive two known
results.

Differentiating with rexpect to log µ we obtain the holomorphic perturbative beta
function for SU(Nc) with Nf flavours

β(g) = − g3

16π2
(3Nc −Nf ) (1.74)

Defining µ = Λ as the scale where g(Λ) =∞ gives

Λb = µb0 exp

(
− 8π2

g2(µ0)

)
. (1.75)

Making use of (1.69) with µ = µ0 one can easily check that dΛ/dµ0 = 0. Hence, Λ
does not depend on µ0 itself, but rather on the value of the bare coupling g(µ0) at
the UV scale µ0. This trading of a dimensionless quantity, g(µ0), by a dimensionfull
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number, Λ, goes under the name of dimensional transmutation. It will turn out to
be consistent to extend the definition of Λ to complex values,(

Λ

µ0

)b
= exp

(
− 8π2

g2(µ0)
+ iθ

)
= e2πiτ(µ0) (1.76)

1.3.2.1 Absence of non-perturbative corrections for pure N = 1 SYM

We have seen in (1.67) that the perturbative running is exhausted by the one-loop con-
tribution. In the case of pure N = 1 SYM, A slight refinement of this argument permits
to show that potential non-perturbative corrections shown in (1.66) are also absent. In
N = 1 SYM there are massless Weyl fermions, and as we will soon see, anomalous global
U(1) symetries. In such a context, the θ parameter is as unphysical as the choice of the
origin of phases for the Weyl fermions. Therefore there should be a consistent reduction
of the RG flow to θ = 0. However it is evident from (1.66) that setting Re(τ0) = 0 we do
not get Reτ(µ) = 0 except if fn = 0 for n ≥ 1. In contrast, the n = 0 piece (1.67) leaves θ
intact.

1.3.3. Matching Conditions

The previous analysis allows us to explore the behaviour of the effective action when the
scale is moved relative to the value of the relevant scales in the theory. The later are set
by dimensionfull couplings, like masses, and by vevs.

Consider the following two possible scenarios

Suppose we start from an SU(Nc) theory with Nf flavors. From (1.203) we learn
that we can give to one of the chiral fields, a vev, say |aNf | = |ãNf | = v. With large
momentum scales q >> v the theory looks like SU(Nc) with Nf flavors, but for
q << v the theory looks like SU(Nc − 1) with Nf − 1 flavors. Each regime has its
own dynamical scale Λ. This setup can be generalized to an arbitrary number of
vevs. |ag| = |ãg| = v for g = 1, ...,∆).

Alternatively, we may imagine that a mass term for a given quark is introduced

Lm = mQ̃Q

For energies p >> m the theory looks like (SU(Nc), Nf ). However much below
p << m the quanta of this field are not excited and we may replace it by its classical
vev, which actually is vanishing, as imposed by the F term conditions:

FQ = mQ̃ = 0 ; FQ̃ = mQ = 0

Therefore the field completely disappears, and the theory looks effectively like (SU(Nc), Nf−
1).

To cope with both possibilities consider the general problem of matching of high and low
energy theories

(SU(Nc), Nf )
s
↪→ (SU(Ñc), Ñf ) (1.77)
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with Ñc = Nc−∆ and Ñf = Nf −Ξ, where s stands for a mass scale, either v or m, where
both, high and low energy-theories must connect. Each theory has its own RG equation
dynamical scale

Λ(µ) = µe
2πiτ(µ)

b

Λ̃(µ̃) = µ̃e
2πiτ̃(µ̃)

b̃

(1.78)

In principle, the definition scales µ and µ̃ are independent. However in this case they are
linked by the fact that the effective theory and the microscopic theory match together at
scale s

τ(s) = τ̃(s) ⇒ Λb = Λ̃b̃sb−b̃ (1.79)

1.3.4. Konishi Anomaly

The Konishi anomaly is the supersymmetric version of the familiar axial anomaly. Consider
to the following super-chiral transformations Q→ Q′ with

Q′f = eiαQf ; Q̃′f = eiβQ̃f

Q′†f = e−iαQ̄f ; Q̃′†f = e−iβQ̃†f (1.80)

with α, β real parameters. This is by itself a (global) symmetry of the ungauged action

S(Q,Q†, Q̃, Q̃†;V ) =

∫
d4xd4θ (Q†e2VQ+ Q̃e−2V Q̃†)

+

∫
d4xd2θW(Q, Q̃) +

∫
d4xd2θW̄(Q†, Q̃†) (1.81)

for vanishing superpotential W = 0. Considering the action of this symmery on the fer-
mions ψ and ψ̃ inside Qf and Q̃f for α = β this is an extension of the familiar U(1)A
axial symmetry, whereas for α = −β this is the analog of the vector (or baryon) U(1)V
symmetry.

Now in order to capture the associated Ward identity we promote this global transforma-
tions to local ones. Moreover we will relax the reality conditions on α and β and promote
them to independent chiral superfields α(x, θ, θ̄) and β(x, θ, θ̄). Then the classical action
will no more be invariant (unless we not transform the gauge field to compensate for it,
in which case we are actually gauging the symmetry). An additional ingredient is that
we shall treat all chiral fields Q,Q†, Q̃ and Q̃† as independent from one another (notice
that, for example, the scalar φ in Q is now complex, hence we have doubled the degrees
of freedom). Associated with each independent transformation of each field, we shall find
an anomalous Ward identity.

For example, increasing just
Q→ eiα(x,θ,θ̄)Q (1.82)
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leads to 2

δαS = iα(x, θ, θ̄)
δS(eiαQ)

δ iα(x, θ, θ̄)

= iα(x, θ, θ̄)

(
−1

4
D̄2Q†fe

2VQf +Qf
∂W(Q, Q̃)

∂Qf

)
(1.84)

Making α ∈ R global does not make the action invariant, so we may not derive a classical
conservation equation 3. However the above transformation (1.82) is by itself a quantum
symmetry of the path integral Z(Q,Q†, Q̃, Q̃†) since the quantum field Q is integrated over
and (1.82) is just a change of variables. The measure of integration changes by a jacobian,

(DQf )→ (DeiαQf ) = (DQf )J(α) (1.85)

whose covariant-superspace evaluation was performed by Konishi and Shizuya [4], with
the result

J(iα) = exp

(
−
∫
d4xd2θ

T (Rf )

32π2
(iα) TrW 2

)
(1.86)

Demanding that Z be independent of α, Z(eiαQ) = Z(Q) leads now to theQ-Ward identity

0 =

〈
−1

4
D̄2Q†fe

2VQf +Qf
∂W(Q, Q̃)

∂Qf
−
∑
f

T (Rf )

32π2
TrW 2

〉
(1.87)

the Q† → e−iα
†(x,θ,θ̄)Q†f gives the Jacobian

J̄(−iα†) = exp

(
−
∫
d4xd2θ

T (Rf )

32π2
(−iα†) TrW̄ 2

)
(1.88)

and from here the Q† Ward identity

0 =

〈
−1

4
D2Q†fe

2VQf +Q†f
∂W̄(Q†, Q̃†)

∂Q†f
−
∑
f

T (Rf )

32π2
TrW̄ 2

〉
(1.89)

And similarly with Q̃f and Q̃†f

0 =

〈
−1

4
D̄2 Q̃fe

−2V Q̃†f + Q̃f
∂W(Q, Q̃)

∂Q̃f
−
∑
f

T (Rf )

32π2
TrW 2

〉
(1.90)

0 =

〈
−1

4
D2 Q̃fe

−2V Q̃f + Q̃†f
∂W̄(Q†, Q̃†)

∂Q̃†f
−
∑
f

T (Rf )

32π2
TrW̄ 2

〉
(1.91)

2The D̄2 appears from the chiral functional differentiation rule

δ

δα(x, θ, θ̄)
α(y, θ′, θ̄′) = −1

4
D̄2δ(x− y)δ(θ − θ′)δ(θ̄ − θ̄′) (1.83)

3this would need a compensating transformation, i.e. α = ᾱ = ±β = ±β̄ for a full global vector/axial
transformation
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1.3.4.1 Konishi Anomaly and Gaugino Condensate

Set W(Q, Q̃) = mf
gQ

gQ̃f in (1.87) and T (Rf ) = T (F ) = 1 for the fundamental represen-
tation. Then it can be written in components, the lowest one being:

〈Q†fe
2VQf

∣∣∣
θ̄2
〉 = mf

g〈φ̃fφg〉 −
1

32π2
〈λλ〉 (1.92)

It turns out that the left hand side con be expressed as a total SUSY tranformation

〈Q†fe
2VQf

∣∣∣
θ̄2
〉 = 〈 1

2
√

2
{Q̄α̇, ψ̄α̇ fφf (x)}〉 (1.93)

In the absence of spontaneous symmery breaking Q|0〉 = Q̄|0〉 = 0 leading to the following
relationship among composite operator vev’s

〈λλ〉 = 32π2mf
g〈φ̃fφg〉 (1.94)

This equations states in short that, as soon as some of the scalar fields acquire a vev in a
massive theory they will trigger a gluino condensation. Moreover (1.94) will be exact to
all orders in perturbation theory.

1.3.4.2 U(1)A axial anomaly

Again setting W(Q, Q̄) = Q̃gm
f
gQ

g, multiplying (1.87) by D2 and (1.91) by D̄2 and
subtracting one gets4

0 = 〈∂µΓ5
µ − iM − a〉 (1.96)

with

Γ5
µ = (DσµD̄ − D̄σ̄µD)

(
Q†e2VQ

)
/4

M = −(D2(Q̃fm
f
gQ

g)− D̄2(Q†fm
f
gQ̃
†f

a = −
iNf

32π2
(D2TrW 2 − D̄2TrW̄ 2) (1.97)

Equation (1.96) contains the full set of anomalies forming a supermultiplet of anomalies.
For example the lowest component reduces to the standard axial U(1)A anomaly

∂µ(ψ̄f σ̄
µψf ) = ψ̃fm

f
gψ

g +
Nf

32π2
Tr
(
FµνF̃

µν
)

(1.98)

Another way to see this is to perform simultaneous rotation of Q and Q† with real constant
superfields α = α† = α∗ The measure now changes by

(DeiαQf )(De−iαQ†f ) = (DQf )(DQ†f )J(iα)J̄(−iα) (1.99)

4one must make use of
[D2, D̄2] = −i∂µ(DσµD̄ − D̄†σ̄µD) (1.95)
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where the total Jacobian now is

J(iα)J̄(−iα) = exp

(
−iα

T (Rf )

32π2

∫
d4x(d2θ TrW 2 − d2θ̄ TrW̄ 2)

)
= exp

(
Im

8π

αT (Rf )

2π

∫
d4xd2θ TrW 2

)
(1.100)

Bearing in mind the form of the gauge kinetic term in the action (1.50) with τ0 = 4πi
g20

+ θ
2π ,

this can be interpreted as a shift in the theta angle

θ → θ − αT (Rf ) (1.101)

Notice that this result can be blamed entirely to standard axial anomaly of the Weyl
fermion ψfα in Qf . For a simultaneous rotation of Q and Q̃ the shift is by 2α.

Non-holomorphic schemes for β(g).

1. Canonically Normalized Chiral Superfields

We pause here to stress that the running given in (1.68) has been obtained for a parame-
trization of the Wilsonian RG as given in (1.64). Let us write the effective lagrangian at
scale µ (and for θ = 0

L(µ) =
1

4

1

g2(µ)
Tr

∫
d2θW 2 + h.c.

+Z(µ, µ0)

∫
d2θd2θ̄(Q†e2VQ+ Q̃e−2V Q̃†) (1.102)

where 1
g2

(µ) = Re τ(µ), sometimes called, holomorphic coupling constant, runs exactly at
one loop

1

g2(µ)
=

1

g2(µ0)
+

b

8π2
log

µ

µ0

β(
1

g2
) =

b

8π2
⇒ β(g) = − g3

16π2
b (1.103)

It is important to stress that the one-loop saturation of the RG flow for 1/g2 is valid
only if the Kähler term undergoes the wave function renormalization Z(µ0) → Z(µ, µ0).
The Kähler potential is not a holomorphic quantity, and therefore Z is not protected.
Generically it will receive contributions at all orders in perturbation theory. We may
however decide to keep, at each stage in the RG trajectory, normalized kinetic terms for
the chiral superfields. This amounts to a field redefinition

Qc =
√
Z(µ, µ0)Q , Q̃c =

√
Z(µ, µ0) Q̃. (1.104)
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This is of the form (1.80) with iα = −iα† = −1
2 logZ(µ, µ0). Hence α(x, θ, θ̄) is a purely

imaginary chiral superfield. The quantum measure changes accordingly by

D(Q)D(Q†) = D(eiαQc)D(e−iα
†
Q†c) = D(Qc)D(Q†c)J(iα)J̄(−iα†)

= D(Qc)D(Q†c) exp

[
−
T (Rf )

32π2

∫
d4x

(
iα

∫
d2θTrW 2 − iα†

∫
d2θ̄TrW̄ 2

)]
= D(Qc)D(Q†c f ) exp

[
1

4

T (Rf )

16π2
logZ(µ, µ0)

(
Tr

∫
d4xd2θ W 2 + h.c.

)]
Doing the same for Q̃ and Q̃† and adding up contributions, comparing with (1.102) we
find that, at scale µ, we can have a canonically normalized lagrangian

Lc(µ) =
1

4

(
1

g2
c (µ)

)
Tr

∫
d2θW 2 + h.c.+

1

4

∫
d2θd2θ̄(Q†ce

2VQc + Q̃ce
−2V Q̃†c) (1.105)

with a non-holomorphic guage coupling

1

g2(µ)
=

1

g2(µ0)
+

b

8π2
log

µ

µ0
+ 2

∑
f

T (Rf )

16π2
logZ(µ, µ0) (1.106)

From here and, using (1.103) and (1.71) we arrive at the following non-holomorphic (all
loop) beta function

β(
1

g2
) = b−

∑
f

γf =
1

8π2

3

2
T (A)− 1

2

∑
f

T (Rf )(1− γf )

 (1.107)

with

γf (µ) = µ
∂ logZf (µ, µ0)

∂µ
(1.108)

For the case of SU(Nc) with Rf = F ∀f = 1, ..., Nf we arrive finally at the following
result

βc(gc) = − g3
c

16π2

(
3Nc −Nf

(
1− 2γ

))
(1.109)

2. NVSZ scheme: exact beta function

This scheme is most similar to the one used for 1PI effective actions. It not only involves
canonically normalized kinetic terms for the chiral fields, but also for the gauge fields. In
components, the lagrangian (1.105) starts as follows

Lc(µ) = − 1

4g(µ)
F aµνF

µν
a +

i

g2(µ)
λaα(σµ)αα̇Dabµ λ̄α̇b + ... (1.110)

Hence the kinetic terms of gauge bosons and gauginos are not canonically normalized.
“Canonical normalization”means that the coupling constant is not present in front of the
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kinetic terms, and shows up in the covariant derivatives. This leads to the usual Feynman
rules, with coupling constants associated to vertices, instead of propagators. In our case,
one would naively think that canonical normalization can be easily achieved through the
following rescaling redefinition V = gVc. Anticipating that this guess is wrong, we will
replace it by another one

V = gcVc (1.111)

and try to find the relation between g and gc. Inocent as it looks, this change of variables
is again anomalous. In fact, looking at (1.1) it is easy to recognize the action of (1.111) on
the component fields

Aaµ = eiβAac µ , λ
a
α = eiβ λacα , λ̄

a α̇ = e−iβ̄λa α̇c , Da = eiβDa
c (1.112)

with iβ = log gc(µ) = −iβ∗. This again looks like a (complexified) chiral tranformation in
which the Weyl fermions transform with charge 1(though the parameter has been continued
to the imaginary axis). Unfortunately the trick that worked before cannot be used here, as
ther is no way to express the (complex) transformation of the gluinos as a complex chiral
rotation of hte vector multiplet (which is real by definition). We simply quote the result
for how the measure transforms

(DV ) = (DgcVc) = (Delog gcVc)

= (DVc) exp

(
T (A)

32π2
log g2

c (µ)

∫
d4x(d2θTrW 2 + h.c.)

)
(1.113)

Notice that this has the same form as an adjoint-valued chiral multiplet anomaly, but with
the opposite sign, and iα = log gc. With all these ingredients let us proceed

Z =

∫
(DV ) exp

(
−1

4

∫
d4yd2θ

1

g2(µ)
TrW 2(V ) + h.c.

)
=

∫
(DgcVc) exp

(
−1

4

∫
d4yd2θ

1

g2(µ)
TrW 2(gcVc) + h.c.

)
=

∫
(DVc) exp

(
−1

4

∫
d4yd2θ

(
1

g2(µ)
− T (A)

16π2
log g2

c (µ)

)
TrW 2(gcVc) + h.c.

)
Canonical normalization will be achieved if the whole prefactor turns out to be exactlyt
g2
c (µ), or

1

g2
c (µ)

=
1

g2(µ)
+

T (A)

16π2
log

1

g2
c (µ)

(1.114)

This important equation, sometimes known as the Shifman-Veinstein equation, performs
the change of variables gc = gc(g). With it one may compute Z(µ, µ0; gc), and using (1.106)

1

g2
c (µ)

=
1

g2(µ)
+

T (A)

16π2
log

1

g2
c (µ)

(1.115)

Now it is straightforward

β

(
1

g2
c

)(
1− T (A)

16π2
g2
c

)
= β

(
1

g2

)
(1.116)
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and finally, from (1.107) obtain the NSV Z beta function.

β(gc) = − g3
c

32π2

3T (A)−
∑

f T (Rf )(1− 2γf (gc))

1− g2
cT (A)

16π2

(1.117)

Notice that, when we write the lagrangian canonically normalized, even for pure N = 1
SYM, the beta function receives corrections from all loops. Expanding (1.117) in power
series of g2

c should match all the higher loop perturbative calculations in a very particular
scheme.

Discrete Chiral Symmetry.

The original flavour symmetry of the UV action(1.50) is U(Nf ) × U(Nf ) × U(1)R ∼
SU(Nf )× SU(Nf )×U(1)B ×U(1)A ×U(1)R. The quantum numbers under these groups
of the chiral and vector multiplets are given in table 1. In order to see how they arise
remember that the chiral anomaly of a single left-handed Weyl fermion ψα → eiαψα shifts
the θ parameter by

θ → θ − T (R)α (1.118)

We expect a total shift of the θ parameter given by θ → θ − nα where n receives contri-
butions from all the chiral fermions in the spectrum.

Notice that, since θ is an angular variable with period 2π, an exact discrete remnant Zn
(gauge) symmetry of any anomalous U(1) is given by α = m2π

n , m = 1, 2, ..., n. Let us
compute n in some cases.

2C(R) SU(Nf )L × SU(Nf )R U(1)B U(1)A U(1)R U(1)AF

θ 0 0 0 0 1 1

Qf ∼ φf 0 ( Nf , 1 ) 1 1 0
Nf−Nc
Nf

ψf 1 ( Nf , 1 ) 1 1 -1 −Nc
Nf

Q̃f ∼ φ̃f 0 ( 1 , N̄f ) -1 1 0
Nf−Nc
Nf

ψ̃f 1 ( 1 , N̄f ) -1 1 -1 −Nc
Nf

V a 0 0 0 0 0 0

W a ∼ λa 2Nc 0 0 0 1 1

n 0 2Nf 2(Nc −Nf ) 0

Table 1.
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From the last column observe that U(1)AF = U(1)R + (1− Nc
Nf

)U(1)A is the anomaly free

combination of U(1)R and U(1)A, as is revealed by the zero in the last entry. In summary,
anomalies break U(1)A ↪→ Z2Nf and U(1)R ↪→ Z2(Nc−Nf ), while there is an anomaly free
combinations U(1)AF which remains unbroken.

1.4. Non Perturbative Superpotentials

1.4.1. Nf < Nc massless: The Affleck-Dine-Seiberg Superpotential

The non perturbative induced superpotential must be a certain function of the massless de-
grees of freedom W =W(Mf

g), constrained by the symmetries of the microscopic action.
The only true (non-anomalous) symmetry U(1)AF is an R−symmetry, and henceW should
transform with weight 2 under it. From table 1 we ee that detM ∼ det(QQ̃) transforms
with AF charge 2/(Nc − Nf ). Correct scaling dimension 3 is achieved by adjoining the
apropriate powers of Λ. The unique answer is given by the so called Affleck-Dine-Seiberg
superpotential:

Wdyn = (Nc −Nf )

(
Λb

detM

)1/(Nc−Nf )

(1.119)

where, remember, b = 3Nc −Nf . In view of the extension to more complicated examples
we shall review an alternative and fully equivalente route here. Forget about U(1)AF , and
turn all anomalous symmetries non-anomalous by endowing the parameters if the theory
with compensating tranformation rules. In the case at hand, if θ changes as

θ → θ + nα ⇒ τ → τ +
n

2π
α (1.120)

this compensates for the anomalous jacobian 1.118. This is nothing but a trick, that handles
anomalous symmetries as spontaneously broken symmetries, by regarding the parameters
in the accion as vev’s of background fields in some more fundamental theory. After in-
tegrating out the massive fields, the low energy effective action still will parametrically
depend on these background fields. Now the symmetries must be respected by the low
energy effective superpotential, which, as a function includes the parameters.

At low energy the dynamical scale Λ also gets transformed, through its link with the
microscopic coupling constant τ = 4πi

g2
+ θ

2π .

Λb = µe2πiτ(µ) = µe
− 8π2

g2
+iθ → Λbeinα (1.121)

With all this we may build the following table

U(1)B U(1)A U(1)R dimension U(1)s

Mf
g 0 2 0 2

detM 0 2Nf 0 2Nf

Λb 0 2Nf 2(Nc −Nf ) b
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Table 2.

The explicit construction of the superpotentialWeff has to cope with the following global
symmetries:

- SUL(Nf )× SUR(Nf ). This enforces Mf
g to enter through the combination detM .

- U(1)A invariance constraints Weff (Λ, detM) = f(Λb/ detM).

- U(1)R. Being an R symmetry, the invariant is d2θWeff hence Weff must have charge
2. This yields

Weff = C

(
Λb

detM

)1/(Nc−Nf )

(1.122)

- U(1)scale. The invariant is now d4xd2θWeff , so Weff must transform with weight 3.
This is true for (1.119)

[Weff ] = ([Λb]− [detM ])/(Nc −Nf )

= (b− 2Nf )/(Nc −Nf ) = (3Nc −Nf − 2Nf )/(Nc −Nf ) = 3

The fact that scale invariance is automatic once U(1)R is safe is a manifestation of
the anomaly multiplet structure, i.e. the fact that the energy momentum tensor and
the R-current belong to the same supermultiplet.

Nf = 0 Chiral Symmetry Breaking through Gaugino Condensation

Expression (1.119) is kown as the Affleck-Dine-Seiberg superpotential. It is ill defined for
Nf ≥ Nc. In the limit Nf → 0 we still may define the Affleck-Dine-Seiberg superpotential
by setting detM = 1, hence using b = 3Nc

Wdyn = Nc Λ
b
Nc = NcΛ

3 (1.123)

This dynamically generated superpotential has two consequences

Gaugino Condensation Because gauginos of supersymmetric Yang Mills theories are
massless and, at low energies, strongly interacting fermions, it is natural to ask
whether we can reasonably expect pair condensation. This would be like quarks
in QCD or like Cooper pairs in BCS theory of superconductivity. Once we have
integrated out hte gluons, the effective lagrangian written in terms of effective degrees
of freedom can help us in this direction

〈λaλa〉 =
1

Z

∫
[dV ] λaλa e

τ
16π

∫
d6x trW 2+h.c.

=
1

Z(τ)

∫
[dV ] trW 2

∣∣
θ=0

e(
τ

16πi

∫
d6x trW 2−h.c.)

=
1

Z(τ)
16π

∂

∂τ

(∫
[dV ] e

τ
16πi

∫
d6x trW 2

)∣∣∣∣
θ=0
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= 16π
∂

∂τ
(logZ[τ ])|θ=0

= 16πi
∂

∂τ

∫
d2θ Weff (τ)

= 16πNc
∂

∂τ
Λ3(τ)

= 16πiNc
∂

∂τ
µ3e

2πiτ
Nc

= − 32π2 Λ3 (1.124)

Spontaneous Chiral Symmetry Breaking

The exact discrete remnant symmetry of the microscopic theory U(1)R ↪→ Z2Nc (see
paragraph after equation (1.207)) is spontaneously broken down to Z2 by the gaugino
condensate. Indeed under U(1)R, Λb has charge 2Nc (see table 2), hence Λb/Nc has
charge 2,

Λ3 = Λ
b
Nc → Λ3e

2Nc
Nc

iα = Λ3e2iα (1.125)

Therefore just α = 0, π leave the vacuum invariant. All the other elements α =
m/Nc (m = 1, ..., Nc − 1) yield vacua which are different but gauge equivalent to
the one given in (1.124). In total we have Nc vacua.

0 < Nf < Nc Runaway Vacuum

There is no supersymmetric vacuum for finite values of Mf
g. The argument goes as follows:

if 〈Mf
g〉 6= 0 then we expect quark condensates 〈ψ̃fψg〉 6= 0 that signal confinement

and spontaneous breaking of chiral symmetry. Up to here this is the same as for gluino
condensation. The point however is that ψf̃ψ

f is an F -term of the composite chiral operator

Q̃fQ
g. Hence FQ̃gQf 6= 0 signals supersymmetry breaking. Indeed5

FMf
g

=
∂Weff

∂Mf
g

= − C

(Nc −Nf )

(
Λb

detM

)1/(Nc−Nf )

M−1 g
f (1.126)

Hence the vacuum energy

E =
∑
f,g

|FMf
g
|2 +

∑
a

|Da|2

=
C2

(Nc −Nf )2

(
Λb

detM

)2/(Nc−Nf )

Tr(M−1M †−1) (1.127)

since we have chosen the Q̃g, Q
f configurations that solve the D flatness conditions (1.18).

This forces a runaway behaviour Mf
g →∞ for a (supersymmetric) minimum at E = 0.

5use M−1δM = −M−1 g
fδM

f
g, with δ = ∂Mf

g
.
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1.4.2. Nf < Nc mass deformation

Consider the mass term
Wtree =

∑
fg

mf
gQ

gQ̃f . (1.128)

Again, in order to look for a non-perturbative low energy superpotential we shall impose
invariance of Wtree by endowing mf

g with the required transformation properties. In this
way we complete table 2

U(1)B U(1)A U(1)R dimension

detM 0 2Nf 0 2Nf

Λb 0 2Nf 2(Nc −Nf ) b

Q̃fQ
g 0 2 0 2

mf
g 0 -2 2 1

trmM 0 0 2 3

detm 0 −2Nf 2Nf Nf

Table 3.

Now we have more freedom, and indeed the two combinations

a =

(
Λb

detM

) 1
Nc−Nf

; b = tr(mM) (1.129)

have the right symmetries and dimensions.6 We may parametrize the solution as

Weff (Mf
g,Λ,m) = af(b/a) (1.130)

= a(c0 + c1b/a+ c2(b/a)2 + ...)

= cNc,Nf

(
Λb

detM

) 1
Nc−Nf

+ c1TrmM + c2(TrmM)2

(
detM

Λb

) 1
Nc−Nf

+ ...

In the limit mf
g → 0 we know the answer constains just the first term. However, taking

also the weak coupling limit g(µ)|fixed µ →∞ yields Λ = µe
− 8π2

g2b → 0, (b > 0). Hence the
third and ongoing terms can survive in this double scaling limit. To avoid this we conclude
that c2 = c3 = ... = 0, and then obtain the simple answer Weff =Wdyn +Wtree,

Weff (Q, Q̃;m,Λ) = (Nc −Nf )

(
Λb

detM

) 1
Nc−Nf

+ TrmM (1.131)

6Other combinations like (detmdetM)1/Nf seem pathological in the limit Nf → 0.
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Vacuum Stabilization

There is no more runaway behavior.

∂Weff

∂Mg
f

= −
(

Λb

detM

) 1
Nc−Nf

M−1 f
g +mf

g = 0 (1.132)

from here

mf
g =

(
Λb

detM

) 1
Nc−Nf

M−1 f
g (1.133)

detm =
(

Λb
) Nf
Nc−Nf (detM)

−Nc
Nc−Nf

detM =
(

Λb
)Nf
Nc (detm)−

Nc−Nf
Nc (1.134)

Inserting (1.134) back into (1.133) we arrive at

〈Mf
g〉 =

(
ΛbNc,Nf detm

) 1
Nc m−1 f

g (1.135)

This formula displayes the expected Nc solutions through the (1/Nc)
th root.

What is the number of vacua?. In general the flavor symmetry is broken by the mass term
(1.128) as follows

SU(Nf )L × SU(Nf )R × U(1)B × U(1)B × U(1)A ↪→ U(1)B

unless all masses are equal mf
g = mδf g in which case also the vectorial SU(Nf )V sur-

vives. Notice that although neither U(1)A nor U(1)R are classical symmetries, there is a
combination U(1)R̃ = U(1)A + U(1)R that is. Actually it is equivalent to redefining the

R-charge of the chiral superfields Q, Q̃→ 1 in Table 1 (the common value of R charge for
the quiral superfields is fixed by the transformation of the superpotential, otherwise it is
free). From the same table we observe that for this combination n = 2Nc and this signals,
that the continuous classical symmetry is broken by instantons to the discrete quantum
symmetry Z2Nc , as in the pure gauge theory. The elements of this discrete group are pha-

ses of the form eim
2π
2Nc ,m = 1, ..., 2Nc. The chiral field condensate Mf

g as charge 2 under

this discrete remnant symmetry, hence it transforms with e2mi 2π
2Nc which is left invariant

only by the two elements m = 0, Nc. As in the flavourless case, this signals spontaneous
symmetry breaking Z2Nc ↪→ Z2 in as much as the truely distinct vacua are given by

〈Mf
g〉 = c ei(2m) 2π

2Nc ; m = 1, ..., Nc

with c as in the right hand side of (1.135). They are mapped to one another by the broken
symmetry Z2Nc/Z2 given by m = 1, ..., Nc. Therefore we again obtain Nc vacua in complete
agreement with index theorem calculations.
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Gaugino Condensation in the Unbroken SU(Nc −Nf )

This is more or less obvious from the exponent 1/(Nc −Nf ) in (1.119). We can see it in
two different, but equivalent ways

For light fields, i.e. mf
g → 0, we see that the vacuum condition (1.135) pushes the

v.e.v.s 〈Mf
g〉 → ∞. We have here a case of matching at theory scale µNf ∼ det〈M〉

between a high energy with SU(Nc) theory with Nf flavours and a low energy theory
pure gauge theory with SU(Nc −Nf ) flavours:

Λ
3(Nc−Nf )
Nc−Nf =

Λ
3Nc−Nf
Nc

(det〈M〉)
(1.136)

Dimensions match because detM has dimension 2Nf . Indeed, (1.136) is the only
gauge and flavour group invariant version of (1.79) that we have at hand. In terms
of this the superpotential (1.119) reads

W = (Nc −Nf )
(

Λ
3(Nc−Nf )
Nc−Nf

) 1
Nc−Nf = (Nc −Nf ) Λ3

Nc−Nf (1.137)

In view of (1.124) we expect a condensate

〈λλ〉 = 32π2Λ3
Nc−Nf (1.138)

Take now values of mf
g >> 1 all flavours become very massive with expectation

values given by (1.135). We may integrate them out, and insert them in the Konishi
anomaly relation (1.94)

〈λλ〉 = 32π2
(

Λ
3Nc−Nf
Nc,Nf

detm
) 1
Nc (1.139)

Again we are in the presence of a matching of theories (SU(Nc), Nf )
µ=mf g→ (SU(Nc), 0)

at scale detm,

Λ3Nc
Nc

= Λ
3Nc−Nf
Nc,Nf

detm (1.140)

Hence we find again a gaugino condesate in the remaining pure gauge theory

〈λλ〉 = 32π2Λ3
Nc (1.141)

Holomorphic Decoupling

This is a powerfull tool to check the consistency of the Affleck Dine Seiberg superpotential.

With the prefactor Nc −Nf the different values of Nf chain together nicely. To see this,
let the matrix mf

g be dominated by mNf
Nf = m >> mh

d ∼ 0. Then, instead of (1.131)
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and (1.132) we find

Weff (ΛNc,Nf ;m) ↪→ (Nc −Nf )

(
ΛbNc,Nf
detM

) 1
Nc−Nf

+mMNf
Nf (1.142)

∂Weff

∂Mh
Nf

= −

(
ΛbNc,Nf
detM

) 1
Nc−Nf

(M−1) hNf = 0 (1.143)

∂Weff

∂MNf
Nf

= −

(
ΛbNc,Nf
detM

) 1
Nc−Nf

(M−1)NfNf +m = 0 (1.144)

From equation (1.143) we learn that (M−1) hNf = 0. This means that M−1, and hence M ,

are block diagonal matrices. Now, due to this fact we have that (M−1)NfNf ∼ 1/MNf
Nf ,

as well as detM ∼ det M̃ ·MNf
Nf and, hence, from (1.144) we obtain

MNf
Nf =


Λ

3Nc−Nf
Nc,Nf

det M̃

 1
Nc−Nf

1

m


Nc−Nf
Nc−Nf+1

(1.145)

Inserting this back into (1.142) we get after a little algebra

Weff = (Nc −Nf + 1)

m Λ
3Nc−Nf
Nc,Nf

det M̃

 1
Nc−Nf+1

(1.146)

Invoking now the matching condition (1.79) with Ñc = Nc and Ñf = Nf − 1 gives

mΛ
3Nc−Nf
Nf ,Nc

= Λ
3Nc−Nf+1
Nc,Nf−1 (1.147)

in the limit m→∞ we obtain the correct decoupling, including the prefactor

Weff (ΛNc,Nf ;m)
m→∞
↪→ Weff (ΛNc,Nf−1) = (Nc−Nf + 1)

Λ
3Nc−Nf−1
Nc,Nf−1

det M̃

 1
Nc−Nf+1

(1.148)

1.4.3. Integrating Out and In

General Strategy for Nonperturbative Effective Superpotentials

We will now try to put the previous exercise in a more general framework. The general
setup deals with a supersymmetric field theory and a treel level superpotential

Wtree =
∑
r

grX
r(Φi) (1.149)

where gr are classical sources for the gauge invariant functions Xr of the chiral superfields
Φi = φi + ... transforming in the representation Ri of the gauge group G =

∏
sGs, where

each factor has an associated dynamical scale Λbs . The general procedure will be as follows

32



1. Set Wtree = 0. We have a classical moduli space where V =
∑

s |Da|2 = 0, The vev’s
〈φi〉 6= 0 break part or the full gauge symmetry. The gauge invariant functions Xr

are natural coordinates that label inequivalent vaua. They are light fields in that
the classical superpotential for them vanishes. If the Xr are constained classically
we can add a lagrange multiplier to the effective action.

2. Turn on gr and Λ (i.e. consider the full quantum theory. The full quantum wilsonian
superpotential for the effective theory is constrained by two kinematic constraints

Holomorphy:Weff is a holomorphic function of the fieldsXr and the couplingsgr.
This last can be justified by thinking ofthe couplings as background vev’s of ot-
her superfields.

Symmetries: Weff is constrained by all the classical symmetries of the theory
with Wtree = 0. Some of these symmetries can become anomalous for Λ 6= 0,
or explicitely broken by Wtree. The selection rules are obtained by giving to Λ
and gr compensating transformation rules. With them, an ansatz for Weff can
be constructed. See for example (1.130) .

3. Explore the asymptotic behaviour. This includes weak coupling limit gr,Λ→ 0, and
large vev’s 〈φi〉 >> 0. The key fact is that a holomorphic function, Weff in thi case,
is determined by the asymptotic behavour and its singularities.

.

At the end of the day, it is often the case that the resulting answer is of the form

Weff (Λ, gr;X
r) = Weff (gr=0) +

∑
r grX

r

= Wdyn(Λ;Xr) +Wtree(gr;X
r)

(1.150)

In the word, it is linear in the sources gr. This is the case for the example (1.130). It is
also the case in most of the examples known. When it is not, it is conjectured that there is
a redefinition of Xr as funtions of gr such that (1.150) holds. This is the famous linearity
principle.

Integrating Out

Select one of the chiral fields Φ̂i in the original theory, and let Xr̂ denote a subset of
gauge invariant operators made out of Φ̂. Among them there is for example a mass term

gr̂X
r̂ = m̂

˜̂
ΦΦ̂, or higher order invariants.

Weff (Λ, gr, gr̂;X
r, X r̂) =Wdyn(Λ;Xr) +

∑
r

grX
r +

∑
r̂

gr̂X
r̂ (1.151)

We may integrate out X r̂ by solving their equations of motion

dWeff

dX r̂

∣∣∣∣
X r̂=〈X r̂〉

= 0 r̂ = 1, 2, ... (1.152)
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This is the same as demanding

∂Wdyn(Λ;Xr)

∂X r̂
= −gr̂ (1.153)

From here we obtain 〈X r̂〉 = 〈X r̂〉(Λ, gr, gr̂, Xr), and inserting back into Weff we find the
effective potential for the low energy theory below scale m̂.

W̃eff (Λ, gr, gr̂;X
r) =Weff (Λ, gr, gr̂;X

r, 〈X r̂〉) (1.154)

The “down”theory is no more linear in the couplings gr̂. However it is still linear in the gr

dW̃eff

dgr
=
∂Weff (〈X r̂〉)

∂gr
+

∂〈X r̂〉
∂gr

∂Weff (〈X r̂〉)
∂X r̂

= Xr (1.155)

Therefore we write for it

W̃eff (Λ, gr, gr̂;X
r) = W̃dyn(Λ, gr̂;X

r) +
∑
r

grX
r (1.156)

The effective dynamical potential, contains now the additional couplings gr̂. The asym-
ptotic behaviour dictates that

W̃dyn(Λ, gr̂;X
r) = W̃0

dyn(Λ̃;Xr) + W̃I(Λ, gr̂;X
r̂) . (1.157)

where W̃dyn(Λ;Xr) is the dynamical potential of the “down”theory. The term W̃I vanishes
in the limit m̂/gr̂ → ∞. This can be understood from the fact that the perturbation
gr̂ = m̂ is gaussian, and hence, it can be integrated out exactly in the microscopic theory.
The net effect can be absorbed into a redefinition of the dynamical scale through the usual
matching condition

Λ̃b̃ = Λbm̂b̃−b

This is fully accounted for by the first term W̃0
dyn in (1.157).

Integrating In

Although we got rid of the variables Xr̂, we actually did not lose any information. This
is very different from the usual idea of integrating degrees of freedom, and is related to
the linearity principle. In fact, W̃, is simply a Legendre transform of W with respect to
the variables Xr̂. Therefore, in principle, it is possible to go back, and rescue the original
variables by means of an inverse Legendre transform. To be precise, consider starting from
the “down”theory Wdyn and perturbing by adding gauge singlets X r̂ at tree level. By the
linearity principle, the full effective action will look as follows

W̃eff (Λ̃, gr, gr̂;X
r, X r̂) =Wdyn(Λ̃, gr̂;X

r) +
∑
r

grX
r −

∑
r̂

gr̂X
r̂ (1.158)

As usual, in this context we integrate out gr̂ by demanding independence of the l.h.s.

dW̃eff

dgr̂

∣∣∣∣∣
〈gr̂〉

= 0 (1.159)
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This equate to

∂W̃dyn

∂gr̂
= X r̂ (1.160)

This equation is to be solved for 〈gr̂〉 = 〈gr̂〉(Λ, gr, Xr, X r̂) one can show that the resulting
expression is linear in gr (and, of course, independent of gr̂). By consistency it can be no
other than the original perturbed action for the “up”theory

Weff (Λ̃, gr, 〈gr̂〉;Xr, X r̂) =Wdyn(Λ;Xr, X r̂) +
∑
r

grX
r (1.161)

Veneziano-Yankielowicz Glueball Effective Superpotential

In all the previous reasonings, Λb appeared as a parameter that, in principle coul be
treated o equal footing with the gr. hence we may consider τ = log Λb as the source for the
composite gauge invariant chiarl superfield S = 1

16π2 trW 2. The effective ADS potential

W̃ = NcΛ
3 = NcΛ

b
Nc serves to the purpose of computing the associated classical field

〈S〉 =
∂W̃dyn(Λb)

∂ log Λb
= Λ

b
Nc = Λ3 (1.162)

If we integrate this field in, we are entitled to solve for 〈log Λb(S)〉 = Nc logS and introduce
it back to get

Weff (S) = W̃dyn(〈log Λb〉)− S〈log Λb〉
= NcS − S logSNC

= NcS(1− logS)

From here the effective action follows as

Weff (S; Λb) = Wdyn(S) + log ΛbS

= S

[
log

(
Λb

SNc

)
+Nc

]
= NcS

[
1− log

(
S

Λ3

)]
(1.163)

However the meaning of this superpotential is unclear, since the chiral superfield S is
massive and our effective actions are Wilsonian.

One could further integrate Nf flavours in. The procedure is now clear: addWtree = TrmM
and integrate out the parameters mf

g. Of course, to go to the “up”theory the scales have

to match. Calling Λ̃b̃ th scale-coupling that appears in (1.163), and Λb the one of the
“upstairs”theory, we have clearly

Λ̃b̃ = Λ̃3N−c−Nf
Nf∏
mf

= Λb detm. (1.164)
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So, finally

Weff (Λ,mf
g;S,M

f
g) = S

[
log

(
Λb detm

SNc

)
+Nc

]
− TrmM (1.165)

Solving for dWeff/dm = 0 yields

〈m〉f g = SM−1 f
g ; det〈m〉 =

SNf

detM
(1.166)

and hence we obtain for the “upstairs”dynamical potential

Wdyn(Λ;S,Mf
g) = S

[
log

(
Λb

SNc−Nf detM

)
+Nc −Nf

]
(1.167)

Because S is massive, it should be integrated out. After doing so, the Affleck-Dine-Seiberg
dynamical superpotential (1.119) is recovered.

1.4.4. Nf ≥ Nc: The quantum moduli space

No Dynamically Generated of Superpotential

When Nc = Nf the U(1)R is anomaly free, ie Λb is inert. This makes it imposible to
build a charge 2 superpotential in terms of Λ (at least for massless Q, Q̃). For Nf ≥ Nc

the same expression as (1.119) could be used. However, the exponent 1/(Nc −Nf ) now is
negative, and hence the dynamically generated scale Λb appears in the denominator. This
makes it impossible to arise as an expression generated by instantons. As a consequence,
contrarily to the case Nf < Nc, for Nf ≥ Nc nondynamical superpotential is generated
and, therefore, a moduli space is still present in the quantum theory.

Recall that the classical moduli space admits gauge invariant coordinates

Mf
g = Qf Q̃g

B[f1...fNc ] = Qf1i1Qf2i2 · · ·QfNc iNc εi1i2···iNc (1.168)

B̃[f1...fNf ] = Q̃f1i1Q̃f2i2 · · · Q̃fNc iNc ε
i1i2···iNc (1.169)

subject to algebraic constraints which are trivially satisfied in terms of the microscopic
fields Q and Q̃. For Nc = Nf the quantum moduli space is a deformation of the classical
one. For Nc = Nf + 1 quantum and classical moduli spaces are the same.

Nc = Nf : Quantum Deformed Moduli Space

In this case there are Nf + 2 gauge invariant chiral composite superfields Mf
g ; B and B̃.

The constraint f(M,B, B̃) = detM −BB̃ = 0 leads to a singular manifold at B = B̃ = 0,
where f = df = 0. Seiberg proposed that quantum corrections modify this constraint in
the following form

detM −BB̃ = Λ2Nc (1.170)
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The right hand side, being Λb is proportional to a one-instanton contribution. Observe
that, now, the origin Mf

g = B = B̃ = 0 is no more in the moduli space. Hence quantum
corrections have smoothed out the singularity.

As a check of this conjecture we may decouple one flavour and try to recover the known
result for Nf = Nc − 1. To this aim, add the tree level mass term for the last flavour
(QNf , Q̃Nf )

Wtree = mQNf Q̃Nf = mMNf
Nf =Weff (1.171)

since no additional piece is generated dynamically. For large m, the meson field t = MNf
Nf

looses all its excitations (the kinetic term can be dropped) and it should be replaced by a
function of the other fields that solves de quantum constraint. Writing

detM =

Nf∑
g=1

(−1)Nf+gMNf
g(det M̃g

Nf ) (1.172)

where by (det M̃g
Nf ) we mean the minor of the matrix element MNf

g. Hence from the

constraint we can solve for MNf
Nf and insert into (1.171) to find

Weff =
m

(det M̃)

Λ2Nc +BB̃ −
Nf−1∑
g=1

(−1)Nf+gMNf
g(detM̃)gNf

 (1.173)

with (det M̃) = (det M̃Nf
Nf ). To find the vacuum manifold, we must solve the F flatness

conditions. In particular for f, g = 1, ..., Nf − 1 we find

∂Weff

∂Mf
h

=

Nf−1∑
g=1

m(−1)Nf+gMNf
g
∂

∂Mf
h

(
(det M̃)gNf

(det M̃)

)
= 0

∂Weff

∂B
=

B̃

(det M̃)
= 0

∂Weff

∂B̃
=

B

(det M̃)
= 0

(1.174)

which is solved generically with MNf
g = B = B̃ = 0. Inserting this back into (1.173) only

the first term survives

Weff =
mΛ2Nc

det M̃
=

mΛ3Nc−Nf

det M̃

∣∣∣∣
Nf=Nc

=
mΛbNc,Nf

det M̃

∣∣∣∣∣
Nf=Nc

=
Λb̃
Nc,Ñf

det M̃

∣∣∣∣∣∣
Ñf=Nc−1

= (Nc − Ñf )
Λb̃
Nc,Ñf

det M̃

∣∣∣∣∣∣
Ñf=Nc−1
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hence the down superpotential comes out with the correct coefficient.

The constrained manifold allows for different patterns of symmetry breaking depending on
the vev’s of M,B and B̃. However in no point of moduli space is the full chiral symmetry
broken. Indeed, for Nc = Nf and from table 1, we recognize that al scalar quarks are
neutral under U(1)AF , hence this group will generically remain unbroken. Other points of
interest show partial breaking of the global symmetry are

Mf
g = Λ2δf g , B = B̃ = 0. At this point we have a pattern of symmetry breaking

SU(Nf )L × SU(Nf )R × U(1)b × U(1)AF → SU(Nf )V × U(1)B × U(1)AF

Mf
g = 0 , B = −B̃ = ΛNc , where the pattern of symmetry breaking now is

SU(Nf )L × SU(Nf )R × U(1)B × U(1)AF → SU(Nf )L × SU(Nf )R × U(1)AF

At either of these points we have a certain current algebra realized in terms of two theo-
ries, a microscopic (V,Q, Q̃) and a macroscopic (M,B, B̃). A strong test of the picture is
provided by anomalous triangles, which can be computed in either of both theories, and
must yield the same answer, as is indeed the case.

Nf = Nc + 1

In this situation we have N2
f +2Nf gauge invariant polynomials Mf

g, B
f and B̃f satisfying

the classical constraints

B̄fM
f
g = Mf

g
¯̃B
g

= 0 ; detM(M−1)f
g = B̄f

¯̃B
g

(1.175)

where
B̄f = εff1...fNcB

[f1...fNc ] ; ¯̃Bf = εff1...fNc B̃[f1...fNc ] ; (1.176)

We cannot deform this constraint in a way covariant with the global symmetries in the
absence of masses. Therefore the classical constraints remain the same. In fact the (1.35)
can be thought of as the vacuum equations ∂W/∂M = ∂W/∂B = ∂W/∂B̃ = 0 coming
from the following auxiliary superpotential

W =
1

Λb
( ¯̃BgM

g
f B̄

f − detM) (1.177)

This should not be thought of as a dynamically generated superpotential, but rather as
a trick to envisage the constrained manifold (1.175) as the vacuum surface embedded in
a larger space where all fields Mf

g, B and B̃ are physical and independent but couple
through (1.177).

As a check of this ansatz, let us decouple the last flavour, by adding a mass term to (1.177)

W =
1

Λb
( ¯̃BgM

g
f B̄

f − detM)−mMNf
Nf (1.178)

The F flatness equations ∂W/∂MNf
i = ∂W/∂M i

Nf = 0 with i < Nf reduce M to the
following form

M =

(
M̃ 0
0 MNf

Nf

)
; B̄f =

(
0

B̄Nf

)
; ¯̃B

f
=

(
0

¯̃B
Nf

)
(1.179)
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so, renaming B̄Nf = B and ¯̃BNf = B̃, the superpotential takes the form

W =

(
(

1

Λb
B̃B − det M̃)−m

)
MNf

Nf (1.180)

Finally the equation of motion ∂W/∂MNf
Nf = 0 implies, with Λb = Λ2Nc−1

Nc,Nc+1

det M̃ −BB̃ = mΛ2Nc−1
Nc,Nc+1 = Λ2Nc

Nc,Nc
(1.181)

and the correcto deformed moduli space for Nc = Nf is recovered.

The point M = B = B̃ = 0 is now in the vacuum manifold. At this point the full
global symmetry of the lagrangian is preserved. Hence we have confinement without chiral
symmetry breaking. At this point, anomalies provides a maximal set of nontrivial triangles
to be matched.

Nf ≥ Nc + 2

The previous construction does not admit a further generalization to higher values of
Nf − N − c ≥ 2. There is no way to write a superpotential with U(1)AF charge 2 that
reproduces the classical constraints through the vacuum equations, and the anomaly mat-
ching conditions are not satisfied. A better idea is needed.

1.5. Seiberg Duality

Recall the original form of the barionic operators given in (1.27) and (1.28) and repeated
below

B[f1...fNc ] = Qf1i1 ... QfNc iNc εi1...iNc (1.182)

B̃[f1...fNc ] = Q̃f1i1 ... Q̃fNc iNc ε
i1...iNc (1.183)

The antisymmetric set of indices Nc ≤ Nf indices signals that this is a bound state of
Nc objects (quarks (Qi, Q̃i)) transforming in the fundamental of SU(Nc) gauge. Seiberg’s
proposal starts by going over to the Hodge duals

B̄[g1...gÑc ] =
1

Nc!
εg1···gÑcf1···fNc

Qf1i1Qf2i2 · · ·QfNc iNc εi1i2···iNc (1.184)

¯̃B
[g1...gÑc ]

=
1

Nc!
εg1···gÑcf1···fNc Q̃f1i1Q̃f2i2 · · · Q̃fNc iNc ε

i1i2···iNc (1.185)

with Ñc = Nf −Nc and interpret them as bound states of Ñc objects (dual quarks (qi, q̃
i))

transforming in the fundamental of SU(Ñc).

B̄[g1...gÑc ] = qg1i1 · · · qgÑc iÑc ε
i1i2 ··· iÑc (1.186)

¯̃B
[g1...gÑc ]

= qg1i1 · · · qgÑc iÑc εi1i2···iÑc (1.187)
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The number of flavours is the same Nf ≥ Ñc.

SU(Nf )L × SU(Nf )R U(1)B U(1)A U(1)AF D(g=0) D(g=g∗)

Qf ( Nf , 1 ) 1 1 Ñc
Nf

1 3
2
Ñc
Nf

Q̃f ( 1 , N̄f ) -1 1 Ñc
Nf

1 3
2
Ñc
Nf

Mf
g (Nf , N̄f ) 0 2 2 ÑcNf 2 3 ÑcNf

Bf1...fÑc

(
Nf

Nc

)
Nc Nc

NcÑc
Nf

Nc
3
2
NcÑc
Nf

B̃f1...fÑc

(
Nf

Nc

)
−Nc Nc

NcÑc
Nf

Nc
3
2
NcÑc
Nf

Table 3.

An important obervation is the following: gauge symmetries are related to a redundant
description of physics. Duality, in the sense of universality says there is nothing that pre-
vents having two such different UV descriptions that yield equivalent IR physics. However,
global symmetries survive intact and must be the same all along the RG trajectory. The
first thing we would try to do is to assign correct global charges to the dual microscopic
fields. Since U(1) charges are additive, the correct way to assign quantum numbers to the
dual quarks qf , q̃

g is to partition those of the baryon operators, among the new constituent
fields. This leads to the first two lines in the following table.

SU(Nf )L × SU(Nf )R U(1)B U(1)A U(1)AF D(g=0) D(g=g∗)

qf (N̄f , 1) Nc
Ñc

Nc
Ñc

Nc
Nf

1 3
2
Nc
Nf

q̃f (1 , Nf ) -Nc
Ñc

Nc
Ñc

Nc
Nf

1 3
2
Nc
Nf

T f g (Nf , N̄f ) 0 2 2 ÑcNf 1 3 ÑcNf

M̃g
f (Nf , N̄f ) 0 2Nc

Ñc
2NcNf 2 3NcNf

B̄g1...gÑc

(
Nf

Nc

)
Nc Nc

NcÑc
Nf

Nc
3
2
NcÑc
Nf

¯̃B
g1...gÑc

(
Nf

Nc

)
−Nc Nc

NcÑc
Nf

Nc
3
2
NcÑc
Nf

Table 4.

It is fairly obvious from this table that the “magnetic”meson operator M̃f
g = q̃fqg is not

the counterpart of the “electric”meson operator Mf
g . For this reason, Seiberg introduced
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an additional fundamental field, a color singlet T f g transforming in the (Nf , N̄f ) represen-
tation, and endowed with the same quantum charges as the “electric”meson operator Mf

g.
Now, if T f g is a new fundamental chiral superfield, there should be a U(1)T under wich
only T is charged. This symmetry was not observed in the electric theory. Both problems,
the absence of magnetic mesons M̃f

g = q̃fqg and U(1)T are solved by postulating the
existence of a relevant superpotential

W(q, q̃, T ) = λ qfi T
f
g q̃

gi = λtrTM̃ (1.188)

where λ is a dimensionless constant. Observe that, interestingly enough, this expression has
the right U(1)B × U(1)AF charge (0, 2) of a superpotential. However U(1)T is explicitely
broken as desired. Moreover, at a generic point in moduli space 〈T f g〉 6= 0, this potential
gives mass to the magnetic meson operator, which hence decouples from the low energy
effective action. Next we face the following questions

1. In which sense is this duality a symmetry?

2. What are the consistency checks that it passes?

To answer the first question we start looking carefully at the RG behaviour of the dual
pair. Recall that the exact beta function was given by

β(g) =
g3

16π2

3Nc −Nf (1− γ(g2))

1−Nc
g2

8π2

(1.189)

γ(g2) = − g2

8π2

N2
c − 1

Nc
+O(g2)

where γ is the anomalous dimension of the mass. The structure of the numerator in
(1.189) reveals a competition between the anti-screening of gluon, and the screening of
matter fields. For different values of Nf and Nc, there is winning of either effect, or even
an interesting window (conformal window) where they equilibrate. A carefull analysis of
this exact beta function leads to the following phase diagram.

3Nc ≤ Nf Non Abelian IR Free Electric Phase.

In the last interval, 3Nc ≤ Nf , the theory loses asymptotic freedom and gains, ins-
tead, IR freedom. The potential among distant charges behaves at long distances as
V (r) ∼ e2(r)/r with e2(r) = 1/ log(Λr). Much like QED, but with gluons (therefore
the name of this phase). r = Λ−1 signals, instead, a Landau pole.

3
2Nc < Nf < 3Nc Interacting Non-Abelian Coulomb Phase, ( conformal window ).

In this interval, the coupling is presumed to approach a non trivial IR fixed point
g → g∗. This can be proven rigurously in a certain scaling limit where Nc, Nf →∞.
In general it is postulated that this is always the case in this interval. Therefore, the
LEEA is a nontrivial superconformal field theory. Because of conformal invariance,
the potential among distant sources has to behave as V (r) ∼ 1/r for large r. That is
why we refere to this as a non-Abelian Coulomb phase.
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The full scaling dimension of a (composite) operator D(O) = D′(O)+γ(O) where D0

is the engineering dimension and γ the anomalous dimension. It is to be calculated
in perturbation theory as a series expansion γ = γ1g

2 + .... Therefore the engineering
dimension coincides with the full dimension in a free theory D0 = D(g = 0), i.e. at
a trivial fixed point. The other interesting posibility arises in a superconformal field
theory (for example, as is now the case, at a nontrivial fixed point g = g∗). The
superconformal algebra has a nonanomalous U(1)R. From this algebra, the exact
scaling dimension of chiral operators satisfies

D =
3

2
|R| (1.190)

Back to our case, we identify U(1)R with our anomaly free combination U(1)AF .
This allows us to complete the two final columns in figures 3 and 4. It is noteworthy
to remark that the same values of γ can be obtained by demanding the vanishing
of the numerator in (1.189). For example, since Q and Q̃ build up a single flavour

β = 0 ⇒ γ(Q, Q̃) = −3NcNf + 1, and hence D(M) = 2 + γ = 3 ÑcNf , and D(B) =

Nc + Nc
2 γ = 3

2
ÑcNc
Nf

.

Nc + 1 < Nf ≤ 3
2Nc Nonabelian IR Free Magnetic Phase.

As the Nf decreases past 3Nc, the fixed point g∗ increases. For Nf ≤ 3
2Nc is reached

Ñ ≤ Nc/2 and the dimension D(M) = 3Ñc
Nf
≤ 1. This cannot correspond to a

unitary superconformal field theory, for which the smalles conformal dimension is
1. Therefore the theory must be in a different phase. From the point of view of the
electric theory looks as standard asymptotically free theory, strongly coupled in the
IR. However, from the point of view of the, as yet conjectured, dual magnetic theory
Nc + 1 < Nf ≤ 3

2Nc corresponds to the inequality 4 + Ñc ≤ 3Ñc ≤ Nf . Therefore the
magnetic theory is in a Non-Abelian IR Free Phase. The field content is therefore best
analized in the IR trivial fixed point, and consists of quarks qf , q̃

f and the additional
field T f g. Still we have to think about the Yukawa type superpotential (1.188). The
dimension of this operator, which is 3 at the IR trivial fixed point where T, q and
q̃ are free, has to be computed in perturbation theory. It turns out to be irrelevant
and therefore vanishing in the IR limit. Therefore the magnetic theory looks around
energy scales µ→ 0 pretty much like the electric theory around energy scales µ→∞.

1.5.1. Duality in the Conformal Window

Under Nc → Ñc = Nf − Nc, the band 3
2Nc < Nf < 3Nc maps over to the same interval

3
2Ñc < Nf < 3Ñc. The extrema are exchanged and the fixed point is at Nf = 2Nc = 2Ñc.
Therefore both theories, in the IR are in a Non-Abelian Coulomb Phase. In the IR, the
electric meson fieldM and the magnetic singlet T describe the same macroscopic field, since
their dimensions match. Actually we are speaking about three different fixed points. At
λ = 0 we have a fixed point at g∗ where the singlet field T is free (it only has kinetic term).
Therefore, at this point the dimension of the perturbation (1.188) is equal 1 + 23

2
Nc
Nf
≤ 3.
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Hence it is a relevant perturbation, and it drives the theory in the IR to another fixed
point (g∗, λ∗). It is this fixed point the one that describes the same physics as the electric
theory. In particular, T and M flow to the same IR meson operator since both their
quantum numbers and dimensions match. At the UV fixed point, however, there is not
such a simple matching as with the barions. The UV dimensions of T and M disagree by
an amount of one. In order to relate them we must introduce a scale µ

T f g =
1

µ
Mf

g ≡
1

µ
Qf Q̃g (1.191)

An independent way of introducing this independent scale is as the crossover scale of both
asymptotically free theories whose dynamical scales are Λ and Λ̃.

Λ3Nc−Nf Λ̃3Ñc−Nf = (−1)ÑcµNf (1.192)

The behaviour of the RG flows embodied in this equation shows that the gauge coupling
of one theory becomes weaker as the one of the dual becomes stronger.

Duality is an involution

The dual of SU(Ñc) and Nf flavours, contains again Nf flavours in the fundamental of

the gauge group SU( ˜̃N c) = SU(Nc). The relation (1.192) does not transform correctly. A
second duality trasformation brings it to

Λ̃3Ñc−Nf ˜̃Λ
3 ˜̃Nc−Nf

= (−1)
˜̃Nc µ̃Nf (1.193)

Since the final theory and the original gauge group are the same so are they scales and
therefore (1.193) is the same as

Λ̃3Ñc−NfΛ3Nc−Nf = (−1)Nc µ̃Nf (1.194)

which, compared with (1.192) shows that µ̃ = −µ.

Since the dual of the dual barions are the original ones, we expect the constituent quarks
to be none other than the original (Qf , Q̃f ). In addition there is a gauge singlet Uf g that
plays the role of the magnetic meson M (m), and shoud be identified with it (in the free
UV) through a relation analogous to (1.191)

Uf g =
1

µ̃
M̃f

g =
1

µ̃
qf q̃g (1.195)

The picture completes with the addition of the corresponding superpotential that adds up
to the one written in (1.188), but expressed in the original variables through (1.191)

W = qfT
f
g q̃
g + Q̃fU

f
gQ

g

=
1

µ
trMT +

1

µ̃
Q̃fM̃

f
gQ

g

=
1

µ

(
trMM̃ − Q̃fM̃

f
gQ

g
)

(1.196)

43



The first term is a mass term for both M and T which therefore may be integrated out
through their equations fo motion.

∂W
∂Mf

g
= M̃g

f = 0

∂W
∂M̃f

g

= Mg
f −QgQ̃f = 0 (1.197)

Hence, with the advised equation µ̃ = −µ we obtain the desired relation M = QQ̃ which
makes the whole picture consistent.

Consistency with Deformation

v.e.v. deformation Turn on a v.e.v. 〈M1
1〉 = a2. For large a, the effect on the electric

theory is tu Higgs the gauge group SU(Nc) ↪→ SU(Nc − 1).

mass deformation

1.6. Conifold Field Theory (Klebanov-Witten)

1.6.1. Free Theory

Let N+ stand short for N + M . Consider an N = 1 QFT with U(N+) × U(N) gauge
symmetry, with (Af , Bf ) chiral superfields f = 1, 2. Hence this case falls in the general case
analyzed before, where (A1, B1) and (A2, B2) build up two flavors (Qf , Q̃f ), f = 1, 2 = Nf .
The gauge group is a direct product. Otherwise one should think of it as a unitary group
with rank two Kronecker product matrices.

g ∼ 1 + αAT
A TA

{
TA(N+) = tA(N+) ⊗ 1 A = 1, ...N2

+

TA(N) = 1⊗ tA(N) A = 1, ..., N2 (1.198)

For tA(N+) and tA(N) we may choose the standard basis

(tmn(N+))
p
q = δmpδnq m,n, p, q... = 1, ...., N+

(tab(N))
c
d = δacδbd a, b, c, d, ... = 1, ...., N (1.199)

Otherwise indices i, j, ... haver their rank restricted by the context. Correspondingly,
Amaf , Bnb

g are rectangular matrices in color space. As representations of U(N+) × U(N)
the chiral superfields transform as

Amaf → (N+, N̄)

Bnb
g → (N̄+, N)

}
m,n = 1, ..., N+, a, b = 1, ..., N

L =
τ

16πi

∫
d2θ W 2 +

1

4

∫
d2θd2θ̄

(
Af†e2VAf +Bg†e−V

t
Bg + ζV

)
(1.200)

44



Vacuum solutions are given by the D flatness condition

∑
A

|DA|2 =

N+∑
A=1

∣∣∣Af†ma(tA ⊗ 1)manbA
nb
f +Bf†

ma((−tA)t ⊗ 1)manbB
nb
f

∣∣∣2
+

N∑
A=1

∣∣∣Af†ma(1⊗ (−tA)t)manbA
nb
f +Bf†

ma (1⊗ tA)manb B
nb
f

∣∣∣2
=

N+∑
m,n=1

∣∣∣Af∗maAnaf −Bf∗
maB

na
f

∣∣∣2 +
N∑

a,b=1

∣∣∣−Af∗maAmbf +Bf∗
maB

mb
f

∣∣∣2
where use of the standar basis for the Lie algebra u(N), (tmn)ij = δmiδnj has been made.
Performing a SU(N+)× SU(N) rotation be may go to a diagonal basis

Amaf = a
(a)
f δma ; Bnb

f = b
(b)
f δnb (1.201)

where (a
(a)
f , b

(b)
f ) represent 4N complex parameters. We arrive at

∑
A=1

|DA|2 = 2

N∑
a

2∑
f=1

∣∣∣|a(a)
f |

2 − |b(a)
f |

2
∣∣∣2 = 0 (1.202)

This imposes the vacuum conditions

|a(r)
1 |

2 + |a(r)
2 |

2 − |b(r)1 |
2 − |b(r)2 |

2 = 0 r = 1, ..., N (1.203)

For generic diagonal vevs. like in (1.201) there is an unbroken U(1)N symmetry. The
unbroken generators are the diagonally embedded Cartan subalgebra tpp(N+)⊗1 + 1⊗
tpp(N) with (tpp)ij = δpiδpj = δij .[

(tpp ⊗ 1)manbA
nb
f + ((−tpp)t ⊗ 1)manbB

nb
f

+ (1⊗ (−tpp)t)manbAnbf + (1⊗ tpp)manb Bnb
f

]
=

[
a

(p)
f − b

(p)
f − a

(p)
f + a

(p)
f

]
= 0

When all eigenvalues are equal a
(r)
f = af , b

(r)
f = bf all diagonally embedded genera-

tors [tA(N+) ⊗ 1 + 1⊗ tA(N)] , A = 1, ..., N2 are unbroken, and the gauge symmetry is

enhanced to U(N)V .

1.6.2. Adding a Superpotential

Let us add the following SU(2)× SU(2) invariant tree level chiral interaction

W = λ tr(AdBfAgBh)εdgεfh

= 2λ tr(A1B1A2B2 −A1B2A2B1) (1.204)
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This represents a non-renormalizable interaction of mass dimension -4. Hence the coupling
constant λ has mass dimension 1. The F−term vacuum conditions read

∂F

∂Aijd
= 0 → B1AgB2 −B2AgB1 = 0

∂F
∂Bklf

= 0 → A1BhA2 −A2BhA1 = 0
(1.205)

1.6.3. Conifold Connection

The classical field theory is well aware that it represents branes moving on a conifold.
Consider the diagonal form given in (1.201) for Af and Bg. The F term equations (1.205)

are trivially satisfied. Constraining a
(r)
f and b

(r)
g by means of equation (1.203) cuts from 8N

down to 7N real variables. The diagonal action maximal abelian subalgebra of dimension
N (so far we are having U(N) instead of SU(N)) allows to mod out N phases. Hence 6N
real or 3N complex variables remain. With them we can define 4N new complex numbers

w
(r)
A via

W
(r)
fg = a

(r)
f b(r)g =

1√
2
w

(r)
A σAfg (A = 1, ..., 4)

constrained by the (in terms of af , bg trivially satisfied) equation

det
f,g

W
(r)
fg = 0 =

4∑
A=1

(w
(r)
A )2 (1.206)

which is exactly the conifold equation. Therefore the W
(r)
fg are coordinates that represent

the position of the r′th D3-brane on the conifold.

1.6.4. Global Symmetries

With λ = 0 the model (1.200) enjoys the usual flavour U(2)×U(2) ∼ SU(2)L×SU(2)R×
U(1)B × U(1)A symmetry. the SU(2) rotate the flavour indices Af and Bg. As usual,
U(1)A and U(1)R are anomalous. The two gauge groups have different beta functions
b = 3Nc −Nf (notice that (Af , Bf ) build up 2 (Dirac) flavours in total)

bSU(N+) = b = 3N+ − 2N ; bSU(N) = b̃ = 3N − 2N+

Correspondingly we have two different strong scales ΛSU(N+) = Λ and ΛSU(N) = Λ̃.

Consider the following table
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SU(N+) SU(N) SU(2)× SU(2) U(1)B U(1)A U(1)R

Af N+ N̄ (2, 1) 1
2N+N

1
2N+N

1
2

Bf N̄+ N (1, 2) −1
2N+N

1
2N+N

1
2

Λb 0 2
N+

2M

Λ̃b̃ 0 2
N −2M

λ 0 − 2
N+N

0

The charges of Λ, Λ̄ and λ are fixed by the conventional choice made for the charges of Af
and Bf . For example

the U(1)R charges of have been selected to have a charge two superpotential with inert λ.

The barionic and axial charges are conventional.

The U(1)A and U(1)R charges of Λ and Λ̄ are obtained as follows. Remember that the chiral
anomaly of a single left-handed Weyl fermion ψα → eiαψα shifts the θ parameter by

θ → θ − T (R)α T (R) =

{
1 R = Nc or N̄c
2Nc R = adjoint

(1.207)

We expect a total shift of the θ parameter given by θ → θ−nα where n receives contributions
from all the chiral fermions in the spectrum. To restore the symmetry one may endow θ with
compensating transformations properties

θ → θ + nα ⇒ τ =
4πi

g2
+

θ

2π
→ τ +

n

2π
α (1.208)

The dynamical scale Λ also gets transformed

Λb = µe2πiτ(µ) = µe
− 8π2

g2
+iθ → Λbeinα (1.209)

From the point of view of SU(N+), the fields Amaf , Bmaf contain 4N (indices f = 1, 2; a =

1, ..., N)) weyl quarks qA, qB with charge 1
2N+N

in the fundamental (index m = 1, ..., N+).

This yields the U(1)A charge of Λb as 2
N+

. The U(1)R charge of chiral quarks qA, qB is
1
2 − 1 = − 1

2 . Again there are 4N of them. But now we must count the gauginos λα with

charge 1 in the adjoint of SU(N+), and they contribute 2N+. Altogether 2N+− 1
2 4N = 2M .

The analysis for SU(N) is the same.

From the list of charges above we notice that U(1)R transformations with phase

e2πi m
2M ∈ Z2M ;m = 1, 2, ...., 2M

affect (Af , Bg) → eπi
m
2M (Af , Bg) whereas Λb and Λ̃b̃ change by e±2πi m

2M
2M = 1, ie Λ, Λ̃

and λ are unchanged. This is the anomaly free Z2M remant of U(1)R. For M = 0 the full
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U(1)R is anomaly free. Ultimately this justifies the choice of charges 1/2 for the chiral
multiplets.

Apart from the superpotential

W = λ tr(AdBfAgBh)εdgεfh

there are other combinations of parameters and fields which are invariant under the global
symmetries. For example

I = λ3M Λ̃b̃

Λb

[
tr(AdBfAgBh)εdgεfh

]2M

= λM
Λ̃b̃

Λb
W 2M (1.210)

Another possibility comes from quotients of the form

R(1) =
tr(AdBf )tr(AgBh)εdgεfh

tr(AdBfAgBh)εdgεfh
(1.211)

with equal number of fields A and B in numerator and denominator but differently con-
tracted ı́ndices. There i salso an important invariant involving just scalar parameters

J = λN++NΛbΛ̃b̃. (1.212)

Its logarithm plays the analog of the dimensionless coupling constant τ in N = 4 SYM.

As a general rule, the tree level superpotential will be renormalized to take the following
form

Weff ↪→ λ tr(AdBfAgBh)εdgεfh F (I, J,R(s)) (1.213)

for a, to be determined function F .
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Caṕıtulo 2

Selected Topics in Gauge Theories

2.1. Anomalies in Gauge Theories

Classical symmetries are symmetries of the Lagrangian. Quantum symmetries are symme-
tries of the path integral. Whenever a classical symmetry is not a quantum symmetry it is
termed anomalous. The prototypical example is the path integral of a chiarl Weyl fermion
ψ coupled to a gauge field Aa.

S[ψ,Aµ] =

∫
d4x iψ†σ̄µ(∂µ + iAaµT

a)ψ (2.1)

Apart from the fact that there is a non-abelian gauge symmetry that involves transforming
Aaµ, there also exist a global chiral U(1) symmetry whereby ψ → eiαψ gets rotated by a
global phase. An clever way to capture the Noether current is to make a local transforma-
tion, α→ α(x), instead of a global one. This is not a symmetry, hence he action changes
by

S[eiα(x)ψ,Aµ] = S[ψ,Aµ] + i

∫
d4x(iα(x))∂µ(ψ†σ̄µψ) . (2.2)

Not for constant α this must be a symmetry, hence the additional term must vanish, or
∂µj

µ
A = 0 with

jµA = iψ†σ̄µψ (2.3)

The Fujikawa method allows to compute the violation of the conservation equation, so
that quantum mechanically it is replaced by

∂µj
µ
A =

1

32π2
F aµνF aµν (2.4)

The easiest way is to regard the path integral as a function of the background gauge field

Z[Aµ] =

∫
DψDψ†e−S[ψ,Aµ] =

∫
D(eiαψ)D(e−iαψ†)e−S[eiαψ,Aµ] (2.5)

Again, letting α(x) be local, we expect that∫
D(eiα(x)ψ)D(e−iα(x)ψ†)e−S[eiα(x)ψ,Aµ] =

∫
DψDψ†J [α(x)]e−S[ψ,Aµ]−

∫
d4xiα(x)∂µj

µ
A
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=

∫
DψDψ†e−S[ψ,Aµ]−

∫
d4xiα(x)(∂µj

µ
A−A(x))

where A(x) = exp[log J(x)] and J(x) is a Jacobian determinant associated to the change
of measure. Since Z is independent of α(x) we may take functional derivative to obtain
the new conservation law

δZ

δiα(x)

∣∣∣∣
α=0

= 〈∂µjµ(x)−A(x)〉 = 0 (2.6)

where the brackets stand for expectation values. A carefull evaluation of A(x) was first
done by Fujikawa, giving the following result

A(x) =
1

16π2
TrFµνF̃µν (2.7)
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Caṕıtulo 3

The Minimal Supersymmetric
Standard Model

3.1. Introduction

If supersymmetry was a real symmetry of the world, the spectrum of particles should come
in representations of the algebra. In these representations, fermions and bosons are grouped
together with equal masses. In 1976-77 Pierre Fayet made a first attempt in this direction.
In a sense this program resembles the one followed by P.A.M. Dirac when postulating that
the proton would be the anti-particle of the electron. So, for example the photon γ and
the neutrino ν, seem to be suited to be inside the same vector multiplet. Other possible
susy pairs would be such as (W±, e±).

After realising that the program was failure, the standard point of view now is to accept
that the susy partners have never been observed, and therefore, SUSY, if there, must be
broken at the energy scale of 1 TeV.

3.1.0.1 The hierarchy problem

In high energy physics there are at least two fundamental scales: the Planck mass MPl ∼
1019 GeV defining the scale of quantum gravity, and the electroweak scale Mew ∼ 102

GeV, defining the electroweak symmetry breaking scale. The obvious questions to solve
are

Why Mew << MPl ? This is the hiearchy problem

Even if this hierarchy was postulated classically, is it stable? This is the ”natural-
ness”problem

To understand the naturalness problem, let us review the fate of masses in the Standard
model.

Gauge particles are massless because of gauge invariance. A term such as mAAµA
µ is not

invariant under Aµ → Aµ + ∂µα.

Fermions are also massless in the Standard model because of of chirality. This means that
mψ̄LψR is not gauge invariant because tipically ψL and ψR live in different (conjugate)

51



representations of the gauge group. The receive masses through the Higgs mechanism (e.g.
H · ψψ gives mass to ψ after H gets a v.e.v.).

The Higgs, as any scalar particle can have a mass term m2
HH̄H which is not forbidden

by any symmetry. Moreover, loop corrections are quadratic, hence they will shift the
value of mH up to the cutoff scale Λ of the theory. This would ruin the classical hierarcy
mH ∼Mew << MPl.

Supersymmetry solves the naturalness problem by adding partners that, when running in
the loops, cancel the quadratic divergences. This is the non-renormalization theorem at
work. Hence supersymmetry does not explain the hierarchy, but once given, stabilizes it.

3.2. The MSSM

Matter in the standard model is chiral. This means that L and R chiralities transform
under different representations of the gauge group. It is customary to list only left handed
chiralities.

SU(3)×SU(2)×U(1) ψ

Q =

(
U
D

)
(3 , 2 , 1/3) (qL, q̃L, FqR)

L =

(
N
E

)
(1 , 2 , -1) (lL, l̃R, FlR)

U c (3̄ , 1 , -4/3) (ucL, ũ
∗
R, F

∗
uR

)

Dc (3̄ , 1 , 2/3) (dcL, d̃
∗
R, F

∗
dR

)

Ec (1 , 1 , 2) (ecL, ẽ
∗
R, F

∗
eR

)

3.2.1. Field content

The vector multiplets include now new fermions: gauginos and higgsinos.

W± = (A±W , λ
±
W , D

±) (3.1)

W 0 = (A0
W , λ

0
W , D

0) (3.2)

A = (A, λ,D) (3.3)

This puts in danger the delicate cancellation of gauge anomalies that occurs in the Stan-
dard Model.

Gauginos pose no problem as they couple vectorially

a single Higgsino running in a triangle loop contributes proportionally to Y 3
H = +13

to the gauge anomaly.

A solution is to introduce a second Higgs doublet of opposite hypercharge such that Y 3
H1

+
Y 3
H2

= (+1)3 + (−1)3 = 0.

Also this is required by the supersymmetric version of the Higgs mechanism. In this me-
chanism, the starting point is a massless vector supermultiplet and a chiral massless su-
permultiplet
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Massless vector Massless chiral

V → (A⊥1,2 ; λ1,2) H → (h0 + ih1 , ψh1,2)

After the Higgs mechanism, one of the scalars, say h0 provide the third longitudinal d.o.f
for the vector potential. A massive supermultiplet has, in addition, four spin 1/2 d.o.f and
an additional scalar

Massive vector

V → (A⊥1,2 , A‖ ∼ h0 ; λ1,2 , χ1,2 ∼ ψh1,2 , φ ∼ h1)

In summary, for each vector supermultiplet we need 2 bosonic degrees of freedom. Then
(W±, Z0) needs 6 bosonic degrees of freedoms. In a SU(2) doublet Hi, i = 1, 2 there are
only 4. Let us introduce therefore a second doublet

SU(3)× SU(2)×U(1)

H1 =

(
H0

1

H−1

)
(1 , 2 , 1)

H2 =

(
H+

2

H0
2

)
(1 , 2 , -1)

such that, after giving mass to all vector bosons, still 2 degrees of freedom are left over.
One is a scalar h0, and the other one a pseudoescalar A0.

This is the MSSM content.

3.2.2. Couplings

The superpotential contains the relevant couplings. On one hand we need the Higgs to
break SU(2)× U(1)Y → U(1)em. We can write bilinear couplings

WH = −µH1 ·H2 = −µεijHiHj (3.4)

µ has mass dimension 1, hence its smallness, as compared with other scales like unificaton
scale or Planck scale should be given a good reason (µ problem).

Cubic terms are needed to give Yukawa masses to the particles of the Standard Model

WY uk = λdQ ·H1D
c + λuQ ·H2U

c + λeL ·H1E
c (3.5)

with color indices suppressed.

We shall assume that the only scalars that acquire v.e.v. are the (electrically) neutral
Higgses H0

1,2, i.e.

〈H1〉 =

(
〈H0

1 〉
0

)
; 〈H2〉 =

(
0
〈H0

1 〉

)
(3.6)

then
WY uk = −λd〈H0

1 〉DLD
c
L + λu〈H0

2 〉ULU cL − λe〈H0
1 〉ELEcL (3.7)
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From here, the lagrangian in components has terms

L = −1

2

∑
ij

∂2W

∂φi∂φj
ψ̄ci,Lψj,L + h.c.+ ...

= λd〈H0
1 〉ψ̄cdLψdL + λu〈H0

2 〉ψ̄cuLψuL + λe〈H0
1 〉ψ̄ceLψeL + ... (3.8)

Notice that hypercharge conservation demands H2 to give mass to up quarks ψu, since we
cannot make use of H∗1 . This is another reason to introduce two Higgs doublets.

3.2.3. R-parity

3.2.3.1 Dangerous couplings

In the Standard Model, gauge invariance plus renormalizability restricts the Yukawa
couplings to be ones in the previous section. In the MSSM this is not so, as there are
more particles involved. For example, the following is a set of possible gauge invariant
renormalizable couplings, L ·LEc , Q ·LDc and U cDcDc. They are dangerous because the
violate lepton or baryon number.

L · LEc Q · LDc U cDcDc

U1(B) 0 + 0 + 0 = 0 1 + 0 - 1 = 0 -1-1-1 = - 3

U1(L) 1 + 1 - 1 = 1 0 + 1 + 0 = 1 0 + 0 + 0 = 0

An important consequence would be the decay of the proton, through the Feynman dia-
gram shown in fig. 3.1

d
d

ucu

u u

e-

p+

π0

Figura 3.1: Proton decay mediate through the terms U cDcDc and Q · LDc in the super-
potential.

Since we now experimentally that the proton lifetime is very long τ > 1025 years, this poses
a bound on the mass of the intermediary particle md̃ ≥ 1015GeV. For trilinear couplings
of O(1) this implies that supersymmetry is so badly broken it will be useless as a possible
solution to the hierarchy problem.

We shall assume they are absent in the MSSM. But a more refined way to rule them out
is to postulate a new symmetry that forbids them. It must be a symmetry that treats
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differently the SM particles from theis SUSY partners. Hence it better be a subgroup of
the R-symmetry called R-parity. Let r be such that

πR : θ → eiπθ = − θ ⇒ R(θ) = −1 (3.9)

we say that θ is parity odd. Let us assign definite parities to the matter multiplets

R(Q) = R(L) = R(U) = R(D) = R(E) = −1

R(H1) = R(H2) = 1 (3.10)

then
R(λdQ ·H1D

c) = R(λuQ ·H2U
c) = R(λeL ·H1E

c) = +1 (3.11)

are allowed whereas

R(L · LEc) = R(Q · LDc) = R(U cDcDc) = −1 (3.12)

3.2.3.2 Experimental consequences

There is a compact way to assign R parity to component fields. Given its baryon number
is B, lepton number is L and spin is s,

R = eiπ(3B+L+2s) (3.13)

This implies that all susy partners have odd parity

B L S 3B+2L+S R

q 1/3 0 1/2 2 1
q̃ 1/3 0 0 1 -1
l 0 1 1/2 2 1

l̃ 0 1 0 1 -1

Concerning experimental consequences we observe that:

Supersymmetric particles have to come in pairs, since +1 = (−1)(−1).

Among al the supersymmetric partners, there must be one that is the lightest (LSP).
Having R = -1 it cannot decay anymore and therefore it must be stable. If the LSP
is neutral (neutralino, higgsino, photino), then it is a weakly interacting massive
particle (WIMP), and is a candidate for dark matter.

3.3. Electroweak symmetry breaking

In order to discuss gauge symmetry breaking we are entitled to analyze the full scalar
potential. Now, in contrast to the SM, lots of scalar fields could acquire a v.e.v.. In order
not to break color or R-symmetry we will set them all to vanishing v.e.v. except for the
Higgs fields. Hence, the scalar potential is

V (H i
1, H

i
2) = VF + VD (3.14)
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For example

VF =
∑
i

(
|F i1|2 + |F i2|2

)
=

∑
i

(∣∣∣∣ ∂W∂H i
1

∣∣∣∣2 +

∣∣∣∣ ∂W∂H i
2

∣∣∣∣2
)

=
∑
ij

|µ|2εijHj∗
2 εikH

k
2 + (1↔ 2)

= |µ|2
(
H†1H1 +H†2H2

)
(3.15)

The D term potential involves contributions from both the SU(2) and the U(1)Y gauge
vector supermultiplets

VD =
1

2
g2

(
H†1

~τ

2
H1 +H†2

~τ

2
H2

)2

+
1

2

(
g′

2

)2 (
−H†1H1 +H†2H2

)2
. (3.16)

where g and g′/2 are, respectively, the couplings of SU(2) and U(1)Y .

The quadratic contribution (3.15) is positive definite, and the quartic couplings in (3.16)
are of order ∼ g2 hence small. Hence, if at all there is SSB, it would happen at a very
small scale M2

W ∼ g2v2.

The crucial assumption is that spontaneous SUSY breaking induces new terms that trigger
gauge SSB at a desired pattern. These include masses for scalar particles, as well as bilinear
couplings

VSB = m2
H1
H†1H1 +m2

H2
H†2H2 + (BµH1 ·H2 + h.c.) . (3.17)

One can show that the minimization of VF + VD + VSB happens for 〈H±1,2〉 = 0 which
implies U(1)em will not be broken. Therefore we can restrict ourselves to the neutral higgs
components.

VSB(H0
1 , H

0
2 ) = m2

1H1
2|H0

1 |2 +m2
2H2

2|H0
2 |2 +Bµ(H0

1H
0
2 +H0∗

1 H0∗
2 )

+
g2 + g′2

8
(|H0

1 |2 − |H0
2 |2)2 (3.18)

were we have introduced the mass parameter

m2
1 = m2

H1
+ |µ|2

m2
2 = m2

H2
+ |µ|2

(3.19)

These parameters must be constrained by some physical requirements.

Stability
m2

1 +m2
2 > 2|Bµ|

Gauge symmetry breaking ⇒ H0
1 = H0

2 = 0 should not be a minimum

m2
1m

2
2 < |Bµ|2 .
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These two conditions imply that necessarily m2
1 6= m2

2.

Defining
v1 = 〈H0

1 〉 ; v2 = 〈H0
2 〉

the relevant magnitudes are

v2 = v2
1 + v2

2 ; tanβ =
v2

v1

in terms of which, the physical masses of the gauge bosons can be expressed as

M2
W =

g2

2
(v2

1 + v2
2) ; M2

Z = 2
m2

1 −m2
2 tan2 β

tan2 β − 1
(3.20)

3.4. Supersymmetry Breaking

If SUSY is true, it must be broken. The mass of the lightest squark must be well above that
of the heaviest quark in the SM. However if we supersymmetry is spontaneously borken
inside the MSSM, we have the condition

StrM2 = Tr(−1)FM2 = TrM2
scalar − TrM2

fermions = 0 . (3.21)

Hence, in mean, scalars are as light as fermions. The way out of this concundrum, is to
postulate the existence of a hidden sector where the SUSY SSB occurs. The particles in
this sector couple very weakly to those of the SM. Hence on one side they are difficult to
rule out and, on the other, the effects of the SUSY breaking is weakly mediated to the
observable sector.

There are three basic scenarios for this mediation

Gravitational mediation.

Gravitons couple both sectors, and therefore, loop effects are suppressed by 1/MPlanck ∼
10−18GeV. In order to obtain a mass splitting, the amount of susy breaking we need,
by mere dimensional analysis will be

∆m =
M2
��susy

MPlanck
∼ 1 TeV = 103GeV (3.22)

hence M��susy ∼
√

∆mMPlanck ∼ 1010 GeV.

Gauge mediation

G = (SU(3)× SU(2)× U(1))×G��susy ≡ G0 ×G��susy

Matter fields are charged under both G0 and G��susy which gives a M��susy of order ∆m
i.e.E O(1) TeV. In that case, the gravitino mass m3/2 is given by

m3/2 ∼
M2
��susy

MPlanck
∼ 10−3eV .
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Anomaly mediation

This is mediated by some auxiliary fields of supergravity. Effects are suppressed by
loop counting.

3.4.0.3 Soft Susy Breaking terms

In all cases, the low energy effective lagrangian for the observable sector develops
what is so called: soft supersymmetry breaking terms

L��susy,soft = m2
φφ
∗φ+ (Mλλλ+ h.c.) + (Aφ3 + h.c). (3.23)

i.e. masses and trilinear couplings for the scalars, and mass terms for the gauginos.

58



Bibliograf́ıa

[1] Philip Argyres, An Introduction to Global Supersymmetry,
http://www.physics.uc.edu/ argyres/661/index.html

[2] N. Seiberg, Naturalness versus supersymmetric non-renormalization theorems,
http://arxiv.org/abs/hep-th/9309335.

[3] Matthew Strassler, An Unorthodox Introduction to Supersymmetric Gauge Theory,
http://arxiv.org/abs/hep-th/0309149

[4] K. Konishi and K. Shizuya, Nuovo Cim.90A, 111 (1985)

[5] Pierre Binétruy, Supersymmetry, Teory, Experiment, and Cosmology, Oxford Univ.
Press. 2006. Bibl. F́ısica: A10-640.

[6] Timothy J. Hollowood, 6 Lectures on QFT, RG and SUSY,
http://arxiv.org/abs/0909.0859

59


