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Cremmer-Julia-Scherk supergravity in 11D

The bosonic part of the action is simple since there are only two fields present:

the metric, GMN and

a 4-form field strength, G[4] = dD[3].

We use conventions for the n-forms such that

G[n] :=
1
n!

Gµ1...µn dxµ1 ∧ · · · ∧ dxµn .

The action reads:

SCJS =
1

16πGN
11

(∫
d11x

√
−G

[
R − 1

48
G[4]

2
]

+
1
6

∫
D[3] ∧G[4] ∧G[4]

)
.

GN
11 defines the 11D Planck length by GN

11 = ` 9
p .

The last term is the Chern-Simons-like term necessary for supersymmetry to
hold. This Lagrangian does not admit a cosmological term.
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Dimensional reduction on a circle: field content

Let us start with a theory in D + 1 dimensions. We can recast the metric as

ds2 = GMN dzM dzN = gµν dxµ dxν + e
4
3 Φ (dy + Aµ dxµ)(dy + Aν dxν) ,

where zM = (xµ, y), µ = 0 . . .D − 1. Assume that all functions depend only on
xµ (zero modes in the internal direction).

The components of the metric GMN read:

Gµν = gµν + e
4
3 Φ Aµ Aν , GµD = e

4
3 Φ Aµ , GDD = e

4
3 Φ =

R2
11

`2
P
.

The inverse metric components GMN , such that GMP GPN = δM
N , are:

Gµν = gµν , GµD = −Aµ := −gµν Aν , GDD = e−
4
3 Φ + Aλ Aλ .

where gµν is such that gµλ gλν = δµν . The relation between the determinants
is straightforward, namely, G = g e

4
3 Φ.

Upon dimensional reduction along a circle, GMN → gµν , Φ, Aµ.
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Dimensional reduction on a circle: field content

We have to see how the form G[4] or, instead, its potential D[3], reduces upon
compactification on a circle: it gives rise to two potentials C[3] and C[2]:

D[3] = C[3] + C[2] ∧ dy .

The corresponding field strengths are easily found

G[4] = dD[3] = dC[3] + dC[2] ∧ dy = F[4] + F[3] ∧ dy .

The Lagrangian density G[4] ∧ ?G[4] can be written as

1
4!

G[4] ∧ ?G[4] =
1
4!

F̃[4] ∧ ?F̃[4] +
1
3!

e−2ΦF[3] ∧ ?F[3] ,

where F̃[4] = F[4] + A[1] ∧ F[3], and A[1] := Aµ dxµ.

The appearance of Φ and Aµ should not be surprising: they come from ?.

Upon dimensional reduction along a circle, D[3] → C[2], C[3].
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Dimensional reduction: dynamics

We shall see how the dynamics looks like upon dimensional reduction,

S =
1

16πGN
D+1

∫
dD+1z

√
−G R[G ] ,

where R[G ] is the curvature scalar for GMN .

The curvature scalar can also be written in terms of D-dimensional quantities,

R[G ] = R[g ] + 2 ∂µΦ ∂µΦ− e−2Φ� e2Φ − 1
4

e2Φ F[2] ∧ ?F[2] ,

where R[g ] and � are built from the metric gµν and F[2] = dA[1].

The action then reads, when we set D = 10,

S =
1

16πGN
10

[ ∫
d10x

√
−g e−2Φ

(
R + 4 ∂µΦ ∂µΦ

)
− 1

4

∫
F[2] ∧ ?F[2]

]
,

where we have defined GN
10 ∼ GN

11/R11.
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Dimensional reduction: dynamics

We shall now focus on the second term in the Cremmer-Julia-Scherk action,

S =
1

16πGN
11

(
−1

2

)
1
4!

∫
G[4] ∧ ?G[4] .

But we have already obtained the integrand in ten dimensional language:

S =
1

16πGN
10

(
−1

2

)[
1
4!

∫
F̃[4] ∧ ?F̃[4] +

1
3!

∫
e−2ΦH[3] ∧ ?H[3]

]
;

here we have conveniently renamed the 3-form, F[3] → H[3].

Finally, the Chern-Simons term:

SCS =
1

16πGN
11

1
6

∫
D[3] ∧G[4] ∧G[4] ,

since G[4] = F[4] + H[3] ∧ dy and D[3] = C[3] + B[2] ∧ dy , gives:

SCS =
1

16πGN
10

1
2

∫
B[2] ∧ F[4] ∧ F[4] ,

where, again, C[2] → B[2].
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Cremmer-Julia-Scherk theory→ type IIA supergravity

Adding the three pieces altogether we get

S =
1

16πGN
10

∫
d10x

√
−g e−2Φ

(
R + 4 ∂µΦ ∂µΦ− 1

12
H[3]

2
)

− 1
32πGN

10

∫ [
1
2!

F[2] ∧ ?F[2] +
1
4!

F̃[4] ∧ ?F̃[4] − B[2] ∧ F[4] ∧ F[4]

]
,

which is nothing but the type IIA supergravity action!

Notice that the dilaton field Φ is related to the 11th dimensional radius, R11,

e
2
3 Φ0 ∼ R11

`P
=⇒ R11 ∼ e

2
3 Φ0 `P .

The string units are given by the string length, `s =
√
α′. Now, we have

e2Φ0 `s
8 ∼ GN

10 ∼
GN

11
R11

=
`P

9

R11
⇒ `P ∼ e

1
3 Φ0 `s ⇒ R11 ∼ eΦ0 `s .
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M-theory

We have seen, then, that
R11 ∼ eΦ0 `s .

As we will see in the coming lectures, when discussing perturbative string
amplitudes, the expectation value of the dilaton provides the string coupling,

gs = eΦ0 .

Thus, we see that at weak string coupling,

gs � 1 ⇒ R11 � `s .

As well, `P ∼ g1/3
s `s, thus `P � `s . These quantities are also small compared

to the 10D Planck scale, Lp = GN
10

1/8 ∼ g1/4
s `s .

Perturbative string theory is thus consistently described in ten dimensions.

However, the gs � 1 limit of these expressions points towards the existence
of an eleven dimensional strongly coupled regime!
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M-theory branes

What is the Lagrangian of this 11D theory? We don’t know much about it!

However, we know that its low energy limit must be eleven dimensional
supergravity, whose (bosonic) field content is very simple.

It has a single G[4]; two objects can couple to its potential:

an electric M2-brane, or,

a magnetic M5-brane.

Eleven dimensional supergravity is an N = 1 theory with 32 supercharges,

{Q̄α,Qβ} = (ΓM C)αβ PM + (ΓMN C)αβ ZMN + (ΓMNPQR C)αβ ZMNPQR .

We have seen earlier this year that SUSY algebras have special multiplets
called BPS. Their mass is bound to be equal to the (absolute value of the)
eigenvalues of the central extensions. Here, they have Lorentz indices:

The BPS states must be extended objects: 2- and 5-dimensional!
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M-theory branes

There must be solutions of 11D supergravity preserving one half of the
supersymmetries that correspond to the M2-brane and to the M5-brane.

Since there is no dilaton, they are easier to find than the p-branes we found
earlier. The two solutions are thus:

ds2
M2 =

(
1 +

1
6

Q2

r6

)− 2
3 (
−dt2 + dy2

(2)

)
+

(
1 +

1
6

Q2

r6

)1
3

dx2
(8) ,

with Fty1y2r = (H−1)′, and:

ds2
M5 =

(
1 +

1
3

Q5

r3

)− 1
3 (
−dt2 + dy2

(5)

)
+

(
1 +

1
3

Q5

r3

)2
3

dx2
(5) ,

with Fθ1...θ4 = Q5 ω4.

Interestingly enough, both solutions have a suggestive near-horizon limit:

The M2-brane→ AdS4× S7, while the M5-brane→ AdS7× S4.
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M-theory branes and D-branes of type IIA

The tension of the M-branes can be computed. They have to be proportional
to specific powers of the inverse of `P ; indeed,

TM2 =
π1/3

22/3 `P
3 and TM5 =

1
27/3π1/3 `P

6 .

Now, the p-branes obtained in the previous lecture can be seen to have a
tension, when understood as Dp-branes,

TDp =
1

(2π)p gs `s
p+1 .

It is immediate to see that TM2 = TD2, since `P ∼ g1/3
s `s (the equal sign

requires thorough computations).

Compactification along a world-volume or transverse direction gives:

for the M2-brane, the F1-string and the D2-brane, and

for the M5-brane, the D4-brane and the NS5-brane.
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S-duality

Recall the Lagrangian of type IIB supergravity,

SIIB =
1

16πGN
10

∫
d10x

√
−g e−2Φ

[(
R + 4 ∂µΦ ∂µΦ− 1

12
H[3]

2
)

− 1
2
∂µχ∂

µχ− 1
12

F[3]
2 − 1

240
F[5]

2
]

+
1

16πGN
10

∫
C[4] ∧ F[3] ∧ H[3]

supplemented by the additional on-shell constraint F[5] = ?F[5].

The scalars and the 2-form potentials come in pairs. The equations of motion
of type IIB supergravity, indeed, are invariant under a SL(2,R) symmetry:

If we arrange the R-R scalar and the dilaton in a complex scalar

λ := χ+ i e−Φ ⇒ λ→ aλ+ b
c λ+ d

,

where the real parameters are such that a d − b c = 1. Something similar
happens with the NS-NS B[2] and the R-R C[2] 2-form potentials:
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S-duality

They also transform according to:(
B[2]

C[2]

)
→
(

d B[2] − c C[2]

a C[2] − b B[2]

)
,

with an element of SL(2,R).

Since B[2] couples to the fundamental string and the corresponding charge is
quantized, SL(2,R)→ SL(2,Z).

Consider χ = 0, and the SL(2,Z) transformation

gs →
1
gs

B[2] → C[2] C[2] → −B[2] .

This particular transformation is often referred to as S-duality.

It is a non-perturbative duality, since it exchanges weak and strong coupling.

However, instead of exchanging at the same time electric and magnetic d.o.f.,
it exchanges NS-NS and R-R fields, both electric.
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S-duality

We argued that there are no R-R-charged states in the perturbative string
spectrum. We see that, if S-duality is a symmetry of type IIB string theory,
then there must be non-perturbative objects carrying RR-charge.

Notice that SL(2,Z) is a duality relating different regimes of the same theory.

A general transformation maps the fundamental string into a general (p,q)
string. It must be possible to quantize it and reproduce the type IIB theory.

The (p,q) string is solitonic, its tension T(p,q) ' 1/gs. This gives the string
scale of the dual theory: thus α′ should not be invariant under S-duality.

Since GN
10 is invariant, and GN

10 ∼ g2
s α
′4, we see that α′ → gs α

′.

Given that type IIB supergravity is SL(2,Z) invariant, it should be possible to
write down it using explicitly SL(2,Z) covariant degrees of freedom:
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S-duality

In the Einstein frame,

SE
IIB =

1
16πGN

10

∫
d10x

√
−g

[(
R − ∂µλ̄ ∂

µλ

2 (Imλ)2 −
Mij

2
F i

[3] · F
j
[3]

)

− 1
240

F̃[5]
2
]

+
εij

32πGN
10

∫
C[4] ∧ F i

[3] ∧ F j
[3] ,

where

F i
[3] :=

(
H[3]

F[3]

)
Mij :=

1
Imλ

(
|λ|2 −Reλ

−Reλ 1

)
.

This is invariant under

λ′ =
aλ+ b
c λ+ d

F i′
[3] = Λi

j F j
[3] F̃ ′[5] = F̃[5] gE ′

µν = gE
µν

where

Λi
j =

(
d c
b a

)
M′ ij = (Λ−1)tMij Λ−1
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T-duality

The world-sheet action in the conformal gauge including all background fields
corresponding to the NS-NS sector of the closed string reads

S = − 1
4πα′

∫
d2σ

[√
−h
(

hαβ gµν ∂αxµ∂βxν − α′Φ R(2)

)
− εαβ Bµν ∂αxµ∂βxν

]
.

A few comments are in order:

When the Φ is constant, the second term captures the topology of the
world-sheet (the Euler characteristic is determined by the genus).

The genus is nothing but the number of string loops!

The Bµν term is the pull-back of B[2].

Notice that the tension of the string equals its charge under B[2].

Now, consider a circular coordinate, say x9, and background fields that do not
depend on it.
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T-duality

The action can be written in terms of a Lagrange multiplier, x̃9, as

S = − 1
4πα′

∫
d2σ

[√
−h hαβ

(
gµν ∂αxµ∂βxν + 2gµ9 Vα∂βxµ + g99 VαVβ

)

− εαβ
(

Bµν ∂αxµ∂βxν − Bµ9 Vα∂βxµ
)
− x̃9 εαβ ∂αVβ − α′

√
−h Φ R(2)

]
.

Indeed, the x̃9 equation of motion is

εαβ ∂αVβ = 0 ⇒ Vβ = ∂βx9 .

Substituting this into the action takes as back to the previous one.

On the other hand, using the Vα equations leads to a dual action with

g̃99 =
1

g99
g̃9µ =

B9µ

g99
g̃µν = gµν +

B9µ B9ν − g9µ g9ν

g99

B̃9µ = −B̃µ9 =
g9µ

g99
B̃µν = Bµν +

g9µ B9ν − B9µ g9ν

g99
.
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T-duality

A full understanding of T-duality would require a microscopic analysis (that
Javier will do). There you will see that, in terms of the left and right moving
momenta, the T-duality transformation becomes:

p9
L ↔ p9

L p9
R ↔ −p9

R α̃n ↔ −α̃n .

In other words,

x9 = x9
L + x9

R ↔ x
′9 = x9

L − x9
R .

Because of the world-sheet supersymmetry, the fermionic superpartner ψ9

also has to transform under T-duality, as ψ9
L ↔ ψ9

L and ψ9
R ↔ −ψ9

R .

T-duality acts like a space-time parity reversal restricted to the right moving
modes: the chirality of the corresponding Ramond ground state changes.

T-duality maps type IIA and type IIB string theories among themselves!

This means that both theories compactified on a circle are equivalent at the
perturbative level (it extends to a non-perturbative symmetry).

José D. Edelstein (USC) Lecture 10: Assorted string dualities 12-mar-2013 18 / 19



T-duality

It is possible to see that, under T-duality, the type IIA and type IIB coupling
constants are related by

g̃s = gs

√
α′

R
,

where R is the radius of the circle along x9 (that the string winds). Then,

g99 =
R2

α′
and g̃99 =

R̃2

α′
=

1
g99

⇒ Φ̃ = Φ− 1
2

g99 .

Big circles are T-dual to small circles! What about the R-R sector fields?

Since T-duality is a space-time parity reversal restricted to the right moving
modes, it transform type IIA R-R tensor fields into type IIB ones and viceversa:

C̃9 = C C̃µ = Cµ9 C̃µν9 = Cµν C̃µνλ = Cµνλ9 .

(these formulas are strictly valid for trivial NS-NS backgrounds).

Correspondingly, type IIA D-branes map into type IIB ones and viceversa.
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