String Theory

Lecture 4

Master en Física Nuclear e de Partículas e as súas aplicacións Tecnolóxicas e Médicas

Alfonso V. Ramallo

Covariant quantization of the open string

We study the representation theory of the Virasoro algebra

$$[L_m, L_n] = (n-m)L_{n+m} + \frac{c}{12}m(m^2-1)\delta_{m+n}$$
 $c = D$

$$c = D$$

graded by
$$N = \sum_{n=1}^{+\infty} \alpha_{-n}^{\mu} \alpha_{n\mu}$$

$$[N, \alpha^{\mu}_{-n}] = n \alpha^{\mu}_{-n}, \qquad n > 0$$

Virasoro primaries

$$(L_0 - a) | \phi > = 0$$

$$L_n | \phi \rangle = 0$$
, $n > 0$

The number a is called the weight of the Virasoro primary

Virasoro descendants of a primary

States that can be written as a finite linear combination of products of Virasoro operators with negative modes acting on the primary

First descendants

$$L_{-1} | \phi > \rightarrow \text{level one}$$

$$L_{-2} | \phi >$$
, $L_{-1} L_{-1} | \phi > \rightarrow$ level two

$$L_{-3} | \phi > , L_{-2} L_{-1} | \phi > , L_{-1} L_{-2} | \phi > , L_{-1}^2 | \phi > \rightarrow \text{level three}$$

They have the structure of a Verma module

They are not all independent since

$$L_{-1} L_{-2} = [L_{-1}, L_{-2}] + L_{-2} L_{-1} = L_{-3} + L_{-2} L_{-1}$$

Basis at level $N_{\phi} + n$:

$$L_{-n_1} L_{-n_2} \cdots L_{-n_k} | \phi > \qquad n = \sum_i n_i$$

$$n_1 \ge n_2 \cdots \ge n_k$$

The descendants are orthogonal to any primary

Take a general descendant of the form

$$|des> = \sum_{i} c_{i} L_{-n_{i}} |\chi_{i}>$$

$$c_i \to \text{constants}, |\chi_i> \to \text{states}, n_i>0$$

$$< des|primary> = \sum_{i} c_{i}^{*} < \chi_{i}|L_{n_{i}}|primary> = 0$$

A null state is a state which is both primary and descendant

 $|\phi\rangle$ and $|\phi\rangle+|null\rangle\rightarrow$ the same inner products with all primary states

A null state has zero norm and the primary states that differ by a null state are physically indistinguishable

 $|\phi\rangle \rightarrow |\phi\rangle + |null\rangle$ is a (gauge) symmetry

A physical state is an equivalence class of a primary state of weight a=1 modulo the null states

$$|phys> \sim |phys> + |null>$$

Vector states of the open string in covariant form

$$\xi_{\mu} \, \alpha_{-1}^{\mu} \, |0; k> \equiv |\xi; k>$$

$$\xi_{\mu} \rightarrow \text{polarization vector}$$

$$(L_0-1)|\xi;k>=0$$
 implies that $M=0$

Physical state condition

$$L_{1} | \xi; k > = (\alpha_{0} \cdot \alpha_{1} + \alpha_{-1} \cdot \alpha_{2} \cdots) \xi_{\mu} \alpha_{-1}^{\mu} | 0; k > =$$

$$= \alpha_{0} \nu [\alpha_{1}^{\nu}, \alpha_{-1}^{\mu}] \xi_{\mu} | 0; k > = \xi_{\mu} \alpha_{0}^{\mu} | 0; k >$$

$$\downarrow \downarrow$$

$$L_{1} | \xi; k > = \sqrt{2} l_{s} (\xi \cdot k) | 0; k >$$

$$\downarrow \downarrow$$

$$L_1 | \xi; k \rangle = 0 \Longrightarrow \xi \cdot k = 0$$

Transversality condition: polarization and momentum are orthogonal

Let us consider the descendant state

$$|d\rangle = \frac{\lambda}{\sqrt{2} l_s} L_{-1} |0; k\rangle$$

$$L_{-1} |0; k> = \left(\alpha_{-1} \cdot \alpha_0 + \alpha_{-2} \cdot \alpha_1 + \cdots \right) |0; k> = \alpha_{-1} \cdot \alpha_0 |0; k> = \sqrt{2} l_s k_\mu \alpha_{-1}^\mu |0; k>$$

$$|d> = \lambda k_{\mu} \alpha_{-1}^{\mu} |0; k>$$

 $|d> = \lambda k_{\mu} \alpha_{-1}^{\mu} |0; k>$ $\implies |d> \text{ is a vector state with polarization } \hat{\xi}^{\mu} = \lambda k^{\mu}$

This state is physical if $k^2 = 0$ because $k_{\mu}\hat{\xi}^{\mu} = \lambda k^2 = 0$

If $k^2 = 0$ the state $|d\rangle$ is physical and descendant and thus null $\langle d|d\rangle = |\lambda|^2 k^2 = 0$

$$\xi_{\mu}$$
 and $\xi_{\mu} + \lambda k^{\mu}$ are equivalent

$$A_{\mu} \to A_{\mu} + \partial_{\mu} \Lambda$$

gauge symmetry!

Closed string spectrum

$$(L_0 - 1) | \psi > = 0,$$
 $(\bar{L}_0 - 1) | \psi > = 0$ $(L_0 - \bar{L}_0) | \psi > = 0$

$$(\bar{L}_0 - 1) | \psi > = 0$$

$$\left(L_0 - \bar{L}_0\right) | \psi \rangle = 0$$

In the light-cone gauge $\alpha_n^+ = \bar{\alpha}_n^+ = 0$

$$L_0 = -\frac{\alpha'}{4}M^2 + N , \qquad \bar{L}_0 = -\frac{\alpha'}{4}M^2 + \bar{N}$$

with

$$N \equiv \sum_{i=1}^{D-2} \sum_{n=1}^{\infty} \alpha_{-n}^{i} \alpha_{n}^{i}$$

$$\bar{N} \equiv \sum_{i=1}^{D-2} \sum_{n=1}^{\infty} \bar{\alpha}_{-n}^i \, \bar{\alpha}_n^i$$

Thus, the mass formula for the closed string is:

$$(L_0 + \bar{L}_0 - 2) | \psi \rangle = 0$$

$$(L_0 + \bar{L}_0 - 2) | \psi > = 0 \implies M^2 = \frac{2}{\alpha'} (N + \bar{N} - 2)$$

level-matching condition $N = \bar{N}$

First mass levels

$$N = \bar{N} = 0 \implies |0> \implies M^2 = -\frac{4}{\alpha'}$$

Closed string tachyon

$$N=\bar{N}=1$$
 \implies $\Omega^{ij}=\alpha^i_{-1}\,\bar{\alpha}^j_{-1}\,|0>$ M

Plus an infinite tower of massive states

We decompose Ω^{ij} in three parts

$$\Omega^{ij} = h^{ij} + B^{ij} + \frac{\Phi}{24} \delta^{ij}$$
 \Longrightarrow $B^{ij} \Longrightarrow$ antisymmetric

$$h^{ij} \Longrightarrow \text{symmetric traceless}$$

 $\Phi \Longrightarrow \text{trace}$

Inverse relations

$$\Phi = \delta^{ij} \Omega^{ij} \implies \Phi \text{ is the trace of } \Omega^{ij}$$

 Φ is a scalar field that is called the dilaton

$$h^{ij} = \frac{1}{2} \left[\Omega^{ij} + \Omega^{ji} \right] - \frac{\Phi}{24} \delta^{ij} \implies h^{ij} = h^{ji} \qquad \delta^{ij} h^{ij} = 0$$

 h^{ij} is a spin two massless particle \implies The graviton!

 $g^{\mu\nu} \approx \eta^{\mu\nu} + h^{\mu\nu} \longrightarrow$ closed string theory contains gravity!

 $B^{ij} = \frac{1}{2} \left[\Omega^{ij} - \Omega^{ji} \right] \implies B^{ij}$ is a two-form gauge potential

In a covariant form the massless fields of the closed string are:

$$(g_{\mu\nu}, B_{\mu\nu}, \Phi)$$

The null vectors of the Virasoro algebra generate general coordinate transformations and the gauge symmetry of the antisymmetric field

Closed string coupled to gravity

$$S[X] = -\frac{1}{4\pi\alpha'} \int d^2\xi \sqrt{g} g^{\alpha\beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} G_{\mu\nu}(X)$$

Action of a 2d interacting field $X^{\mu}(\xi)$

Quantization with the background field method

Expand $X^{\mu}(\xi)$ around a classical configuration $X_0(\xi)$

$$X^{\mu}(\xi) = X_0^{\mu}(\xi) + \pi^{\mu}(\xi) \implies \pi^{\mu} \text{ is not a vector}$$

Riemann normal coordinates

$$\lambda^{\mu}(t)$$
 \Longrightarrow geodesic that connects X_0^{μ} and $X_0^{\mu} + \pi^{\mu}$
$$\ddot{\lambda}^{\mu}(t) + \Gamma^{\mu}_{\nu\sigma} \dot{\lambda}^{\nu}(t) \dot{\lambda}^{\sigma}(t) = 0 \qquad \qquad \lambda(0) = X_0^{\mu}$$

$$\lambda(1) = X_0^{\mu} + \pi^{\mu}$$

$$t \in [0, 1]$$

Take
$$\dot{\lambda}^{\nu}(0) = \sqrt{\alpha'} \, \eta^{\mu}$$

Solve iteratively

$$X^{\mu}(t) = X_0^{\mu} + \sqrt{\alpha'} \, \eta^{\mu} \, t - \frac{\alpha'}{2} \, \Gamma^{\mu}_{\sigma_1 \sigma_2} \, \eta^{\sigma_1} \, \eta^{\sigma_2} \, t^2 - \frac{(\alpha')^{\frac{3}{2}}}{3} \, \Gamma^{\mu}_{\sigma_1 \sigma_2 \sigma_3} \, \eta^{\sigma_1} \, \eta^{\sigma_2} \, \eta^{\sigma_3} \, t^3 + \cdots$$

$$\Gamma^{\mu}_{\sigma_1 \sigma_2 \sigma_3} = \nabla_{\sigma_1} \, \Gamma^{\mu}_{\sigma_1 \sigma_3}$$

$$\pi^{\mu} = \sqrt{\alpha'} \, \eta^{\mu} - \frac{\alpha'}{2} \, \Gamma^{\mu}_{\sigma_1 \sigma_2} \, \eta^{\sigma_1} \, \eta^{\sigma_2} + \cdots$$

 $\eta^{\mu}(\xi)$ parametrizes the quantum fluctuation α' is an expansion parameter

Expansion of the action

$$S[X] = S[X_0] + S^{(2)}[X_0, \pi] + \cdots$$

Expansion in powers of $\alpha' \longrightarrow Low energy expansion$

$$S[X_0] = -\frac{1}{4\pi\alpha'} \int d^2\xi \sqrt{g} \ g^{\alpha\beta} \,\partial_{\alpha} X_0^{\mu} \,\partial_{\beta} X_0^{\nu} \,G_{\mu\nu}(X_0)$$

$$S^{(2)}[X_0, \pi] = -\frac{1}{4\pi} \int d^2 \xi \sqrt{g} \ g^{\alpha\beta} \left[G_{\mu\nu}(X_0) \partial_\alpha \eta^\mu \partial_\beta \eta^\nu + R_{\mu\lambda\sigma\nu}(X_0) \partial_\alpha X_0^\mu \partial_\beta X_0^\nu \eta^\lambda \eta^\sigma \right]$$

Quantum correction

$$-\frac{1}{4\pi}R_{\mu\lambda\sigma\nu}(X_0)\,\partial_\alpha\,X_0^\mu\,\partial_\beta\,X_0^\nu\,<\eta^\lambda\,\eta^\sigma>\qquad \Longrightarrow \qquad \text{divergent}$$

In dimensional regularization in $2 + \epsilon$ dimensions:

$$<\eta^{\lambda}\eta^{\sigma}> = 2\pi\delta^{\lambda\sigma}\mu^{-\epsilon}\int \frac{d^{2+\epsilon}k}{(2\pi)^{2+\epsilon}}\frac{i}{k^2-m^2+i0}$$

 μ is the renormalization point m is an IR mass scale

Performing the integral

$$<\eta^{\lambda}\eta^{\sigma}> = \frac{\delta^{\lambda\sigma}}{2} \left(\frac{m}{\sqrt{4\pi}\mu}\right)^{\epsilon} \Gamma\left(-\frac{\epsilon}{2}\right) = -\frac{1}{\epsilon}\delta^{\lambda\sigma} + \text{regular terms}$$

It induces the divergent term $\longrightarrow \frac{1}{4\pi\epsilon} \int d^2\xi \sqrt{g} \ g^{\alpha\beta} \, \partial_{\alpha} X_0^{\mu} \, \partial_{\beta} X_0^{\nu} \, R_{\mu\nu}(X_0)$

$$R_{\mu\nu} = R^{\lambda}_{\mu\lambda\nu}$$
 is the Ricci tensor

It can be reabsorbed with the following renormalization of the metric

$$G_{\mu\nu} \to G_{\mu\nu} + \frac{\alpha'}{\epsilon} R_{\mu\nu}$$

which corresponds to the beta function

$$\beta_{\mu\nu} = \mu \frac{\partial G_{\mu\nu}}{\partial \mu} = \alpha' R_{\mu\nu}$$

Ricci flow

A non-zero beta function signals breaking of 2d scale invariance

$$\xi^{\alpha} \to \lambda \xi^{\alpha}$$

Scale transformations induce Weyl transformations

$$ds^{2} = g_{\alpha\beta}d\xi^{\alpha}d\xi^{\beta} \to \lambda^{2}g_{\alpha\beta}d\xi^{\alpha}d\xi^{\beta} \implies g_{\alpha\beta} \to \lambda^{2}g_{\alpha\beta}$$

If Weyl symmetry is broken we get an inconsistency

We should require

$$\beta_{\mu\nu} = 0 \Longrightarrow R_{\mu\nu} = 0$$

classical Einstein equations are obtained as a quantum effect in 2d!

Let us fix the conformal gauge in the quantum theory

$$g_{\alpha\beta} = e^{2\phi} \, \delta_{\alpha\beta}$$

Action in $2 + \epsilon$ dimensions:

$$S = -\frac{1}{4\pi\alpha'} \int d^{2+\epsilon} \xi \, e^{\epsilon\phi} \, \partial_{\alpha} X^{\mu} \, \partial^{\alpha} X^{\nu} \, G_{\mu\nu}(X)$$

The conformal factor ϕ does not decouple in $2 + \epsilon$ dimensions

$$e^{\epsilon\phi} \approx 1 + \epsilon\phi$$

$$S \approx -\frac{1}{4\pi\alpha'} \int d^{2+\epsilon}\xi \left(1 + \epsilon\phi\right) \partial_{\alpha} X^{\mu} \partial^{\alpha} X^{\nu} G_{\mu\nu}(X)$$

Renormalizing the metric we get an extra finite term

$$S = -\frac{1}{4\pi\alpha'} \int d^2\xi \partial_\alpha X^\mu \partial^\alpha X^\nu \left(G_{\mu\nu}(X) + \alpha' \phi R_{\mu\nu}(X) \right)$$

The action depends on the conformal factor

$$\frac{\delta S}{\delta \phi} = -\frac{1}{4\pi} \, \partial_{\alpha} \, X^{\mu} \, \partial^{\alpha} \, X^{\nu} \, R_{\mu\nu}(X)$$

Weyl transformation

$$g_{\alpha\beta} \to e^{2\delta\phi} g_{\alpha\beta} \implies \delta g_{\alpha\beta} = 2\delta\phi g_{\alpha\beta} , \ \delta g^{\alpha\beta} = -2\delta\phi g^{\alpha\beta}$$
$$\delta S = \frac{\delta S}{\delta g^{\alpha\beta}} \delta g^{\alpha\beta} = T \sqrt{-\det g} T^{\alpha}_{\alpha} \delta\phi$$

For a flat worldsheet metric
$$\Longrightarrow$$

$$\frac{\delta S}{\delta \phi} = \frac{1}{2\pi\alpha'} \, T^{\alpha}_{\ \alpha}$$

$$T^{\alpha}_{\alpha} = -\frac{\alpha'}{2} R_{\mu\nu}(X) \partial_{\alpha} X^{\mu} \partial^{\alpha} X^{\nu} = -\frac{\beta_{\mu\nu}}{2} \partial_{\alpha} X^{\mu} \partial^{\alpha} X^{\nu}$$

Weyl invariance (and thus consistency) only if $\beta_{\mu\nu} = 0$

Coupling to the antisymmetric $B_{\mu\nu}$ field

$$S' = -\frac{1}{4\pi\alpha'} \int d^2\xi \ B_{\mu\nu}(X) \,\partial_{\alpha}X^{\mu} \,\partial_{\beta} X^{\nu} \,\epsilon^{\alpha\beta}$$

 $\epsilon^{\alpha\beta}$ is an antisymmetric tensor with $\epsilon^{01}=+1$

The action changes by a total derivative under

$$\delta B_{\mu\nu} = \partial_{\mu} \Lambda_{\nu} - \partial_{\nu} \Lambda_{\mu}$$
 \Longrightarrow gauge symmetry

Coupling to the dilaton

$$S'' = \frac{1}{4\pi} \int d^2\xi \, \sqrt{g} \, R^{(2)} \, \Phi(X)$$

Total Weyl anomaly

$$T^{\alpha}_{\alpha} = -\frac{1}{2} \beta_{\mu\nu}(G) g^{\alpha\beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} - \frac{1}{2} \beta_{\mu\nu}(B) \epsilon^{\alpha\beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} - \frac{\alpha'}{2} \beta(\Phi) R^{(2)}$$

$$\beta_{\mu\nu}(G) = \alpha' R_{\mu\nu} + 2\alpha' \nabla_{\mu} \nabla_{\nu} \Phi - \frac{\alpha'}{4} H_{\mu\lambda\sigma} H_{\nu}^{\lambda\sigma}$$
$$\beta_{\mu\nu}(B) = -\frac{\alpha'}{2} \nabla^{\lambda} H_{\lambda\mu\nu} + \alpha' \nabla^{\lambda} \Phi H_{\lambda\mu\nu}$$

$$\beta_{\mu\nu}(B) = -\frac{\alpha'}{2} \, \nabla^{\lambda} \, H_{\lambda\mu\nu} + \alpha' \, \nabla^{\lambda} \Phi \, H_{\lambda\mu\nu}$$

$$\beta_{\mu\nu}(\Phi) = -\frac{\alpha'}{2} \nabla^2 \Phi + \alpha' \nabla_{\mu} \Phi \nabla^{\mu} \Phi - \frac{\alpha'}{24} H_{\mu\nu\lambda} H^{\mu\nu\lambda}$$

 $H_{\mu\nu\rho}$ is the field strength of $B_{\mu\nu}$

$$H_{\mu\nu\rho} = \partial_{\mu} B_{\nu\rho} + \partial_{\nu} B_{\rho\mu} + \partial_{\rho} B_{\mu\nu}$$

 $H_{\mu\nu\rho}$ is invariant under the gauge transformation of $B_{\mu\nu}$

EOMs of the massless fields

$$\beta_{\mu\nu}(G) = \beta_{\mu\nu}(B) = \beta_{\mu\nu}(\Phi) = 0$$

They can be derived from the low energy effective action

$$S = \frac{1}{2\kappa^2} \int d^{26}x \sqrt{-G} e^{-2\Phi} \left[R - \frac{1}{12} H_{\mu\nu\lambda} H^{\mu\nu\lambda} + 4\partial_{\mu} \Phi \partial^{\mu} \Phi \right]$$

 $R = R^{i}_{i}$ is the scalar curvature

$$\kappa \sim l_s^{24}$$

Change to Einstein frame

$$G^{E}_{\mu\nu} = e^{-\frac{\phi}{6}} G_{\mu\nu}$$

$$S = \frac{1}{2\kappa^2} \int d^{26}x \sqrt{-G^E} \left[R^E - \frac{1}{12} e^{-\frac{\Phi}{3}} H_{\mu\nu\lambda} H^{\mu\nu\lambda} - \frac{1}{6} \partial_{\mu} \Phi \partial^{\mu} \Phi \right]$$

Next order in $\alpha' \Longrightarrow$ higher powers of the curvature R