Lecture 6: The superstring

José D. Edelstein
University of Santiago de Compostela
String Theory
Santiago de Compostela, February 26, 2013

Motivation

There are several reasons to tackle superstring theory:

- Spectrum of the bosonic string has a tachyon; unstable (false?) vacuum.
- Nature has fermions.

We have to modify the (field content of the) world-sheet theory.
If we want to reproduce the Dirac equation for spacetime fermions,

$$
i \Gamma^{\mu} p_{\mu}+m=0
$$

we must include anticommuting world-sheet fields, ψ^{μ}, with the expectation that their center of mass modes are Γ^{μ}, such that $\left\{\Gamma^{\mu}, \Gamma^{\nu}\right\}=2 \eta^{\mu \nu}$.

Notice that if this is the case, a kinetic term of the form

$$
\psi^{\mu} \bar{\partial} \psi_{\mu} \quad \Rightarrow \quad \text { Cliff }_{D} \text { algebra }
$$

Thus, D-dim Poincaré invariance makes the 2d world-sheet theory SUSY.

The superstring action

The equation of motion for spacetime spinors arises from the conserved supercurrent of the 2d theory.

Start with the gauge-fixed Polyakov action; add world-sheet Majorana spinors,

$$
S=-\frac{T}{2} \int_{\tau_{1}}^{\tau_{2}} d \tau \int_{0}^{\bar{\sigma}} d \sigma\left(\eta^{\alpha \beta} \partial_{\alpha} x^{\mu} \partial_{\beta} x_{\mu}-i \bar{\psi}^{\mu} \rho^{\alpha} \partial_{\alpha} \psi_{\mu}\right)
$$

Here ρ^{α} are 2d Dirac matrices, $\left\{\rho^{\alpha}, \rho^{\beta}\right\}=-2 \eta^{\alpha \beta}$; a convenient basis being,

$$
\rho^{0}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \rho^{1}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

We refer to the real $\left(\bar{\chi}=\chi^{t} \rho^{0}, \bar{\chi} \psi=\bar{\psi} \chi\right)$ components of ψ in this basis as:

$$
\psi=\binom{\psi_{-}}{\psi_{+}} \quad \psi_{ \pm}^{\star}=\psi_{ \pm}
$$

It is important to emphasize that at this stage it is not obvious at all that such theory will lead to spacetime fermions or spacetime supersymmetry; in fact, the 2d fermion fields are bosons with respect to the spacetime Lorentz group.

Holomorphicity of Majorana-Weyl spinors

The fermionic kinetic term becomes

$$
\bar{\psi} \cdot \rho^{\alpha} \partial_{\alpha} \psi=\psi_{-} \cdot \partial_{+} \psi_{-}+\psi_{+} \cdot \partial_{-} \psi_{+}
$$

where we recall that the light-cone derivatives $\partial_{ \pm}$are

$$
\partial_{ \pm}=\frac{\partial}{\partial \xi^{ \pm}}=\frac{1}{2}\left(\partial_{\tau} \pm \partial_{\sigma}\right) \quad \xi^{ \pm}=\tau \pm \sigma
$$

The equation of motion for the fermions is massless 2d Dirac equation,

$$
\partial_{+} \psi_{-}^{\mu}=\partial_{-} \psi_{+}^{\mu}=0
$$

(still needs boundary conditions). Thus, the Majorana-Weyl fermions:

- $\psi_{-}^{\mu}=\psi_{-}^{\mu}\left(\xi^{-}\right)$describe right-movers while
- $\psi_{+}^{\mu}=\psi_{+}^{\mu}\left(\xi^{+}\right)$describe left-movers.

The equations of motion and constraints for x^{μ} are the same as before.

World-sheet supersymmetry

The system of free scalars and fermions is automatically invariant under the global, infinitesimal, world-sheet supersymmetry transformations

$$
\delta_{\epsilon} x^{\mu}=\bar{\epsilon} \psi^{\mu} \quad \delta_{\epsilon} \psi^{\mu}=-i \rho^{\alpha} \partial_{\alpha} x^{\mu} \epsilon
$$

with ϵ a constant, anticommuting two-component spinor. Indeed,

$$
\begin{aligned}
\delta S & =-T \int_{\tau_{1}}^{\tau_{2}} d \tau \int_{0}^{\bar{\sigma}} d \sigma\left(\eta^{\alpha \beta} \partial_{\alpha} \delta_{\epsilon} x \cdot \partial_{\beta} x-\frac{i}{2}\left[\delta_{\epsilon} \bar{\psi} \cdot \rho^{\alpha} \partial_{\alpha} \psi+\bar{\psi} \cdot \rho^{\alpha} \partial_{\alpha} \delta_{\epsilon} \psi\right]\right) \\
& =-T \int_{\tau_{1}}^{\tau_{2}} d \tau \int_{0}^{\bar{\sigma}} d \sigma\left(\eta^{\alpha \beta} \bar{\epsilon} \partial_{\alpha} \psi+\frac{1}{2}\left[\bar{\epsilon} \rho^{\beta} \rho^{\alpha} \partial_{\alpha} \psi-\bar{\psi} \rho^{\alpha} \rho^{\beta} \epsilon \partial_{\alpha}\right]\right) \cdot \partial_{\beta} x \\
& =-T \int_{\tau_{1}}^{\tau_{2}} d \tau \int_{0}^{\bar{\sigma}} d \sigma\left[\left(\eta^{\alpha \beta} \bar{\epsilon} \partial_{\alpha} \psi+\frac{1}{2} \bar{\epsilon}\left\{\rho^{\beta}, \rho^{\alpha}\right\} \partial_{\alpha} \psi\right) \cdot \partial_{\beta} x-\bar{\epsilon} \partial_{\alpha} \mathcal{J}^{\alpha}\right]
\end{aligned}
$$

where $\partial_{\alpha} \bar{\psi} \rho^{\alpha} \rho^{\beta} \epsilon=\bar{\epsilon} \rho^{\alpha} \rho^{\beta} \partial_{\alpha} \psi ; \delta S$ is given by the Noether supercurrent

$$
\delta S=T \int_{\tau_{1}}^{\tau_{2}} d \tau \int_{0}^{\bar{\sigma}} d \sigma \bar{\epsilon} \partial_{\alpha} \mathcal{J}^{\alpha}=0 \quad \mathcal{J}^{\alpha}=\frac{1}{2} \rho^{\beta} \rho^{\alpha} \psi \cdot \partial_{\beta} X
$$

World-sheet supersymmetry

Some components of the supercurrent vanish. Indeed, due to $\rho^{\alpha} \rho^{\beta} \rho_{\alpha}=0$,

$$
\rho^{\alpha} \mathcal{J}_{\alpha}=0 \quad \text { only one chirality survives : } \mathcal{J}_{\alpha}
$$

which in light-cone coordinates read

$$
J_{ \pm}=\psi_{ \pm} \cdot \partial_{ \pm} x
$$

and they are conserved

$$
\partial_{-} J_{+}=\partial_{+} J_{-}=0
$$

We can use the Noether method to compute the energy-momentum tensor,

$$
T_{ \pm \pm}=\partial_{ \pm} x \cdot \partial_{ \pm} x+\frac{i}{2} \psi_{ \pm} \cdot \partial_{ \pm} \psi_{ \pm} \quad T_{+-}=T_{-+}=0
$$

(the trace still vanishes). The Virasoro constraints $T_{++}=T_{--}=0$ where used in the bosonic case to eliminate ghosts (negative norm states) coming from x^{0}. What about those coming from ψ^{0} ?

Boundary conditions and mode expansion: open strings

To remove the time-like component ψ^{0}, we must also impose $J_{+}=J_{-}=0$. These come from the locally supersymmetric ungauged Polyakov action.

The mode decomposition and boundary conditions for $x^{\mu}(\tau, \sigma)$ are as before. Let us consider the free fermionic fields $\psi^{\mu}(\tau, \sigma)$. In the case of open strings, the variational principle for the Polyakov action requires

$$
\psi_{+} \cdot \delta \psi_{+}-\psi_{-} \cdot \delta \psi_{-}=0 \quad \text { at } \quad \sigma=0, \pi
$$

The Dirac equation admits two possible boundary conditions consistent with Lorentz invariance, namely

$$
\psi_{+}^{\mu}= \pm \psi_{-}^{\mu} \quad\left(\text { and hence } \delta \psi_{+}^{\mu}= \pm \delta \psi_{-}^{\mu}\right) \quad \text { at each end }
$$

The overall relative sign between ψ_{-}^{μ} and ψ_{+}^{μ} is irrelevant; we take, without loss of generality,

$$
\psi_{+}^{\mu}(\tau, 0)=\psi_{-}^{\mu}(\tau, 0)
$$

This still leaves two possibilities at the other endpoint of the string, $\sigma=\pi$.

Boundary conditions and mode expansion: open strings

According to the relative sign,

$$
\begin{array}{lll}
\psi_{+}^{\mu}(\tau, \pi) & =+\psi_{-}^{\mu}(\tau, \pi) & \text { Ramond (R) boundary condition } \\
\psi_{+}^{\mu}(\tau, \pi)=-\psi_{-}^{\mu}(\tau, \pi) & \text { Neveu }- \text { Schwarz (NS) boundary condition }
\end{array}
$$

The mode expansion of the Dirac equation becomes

$$
\begin{array}{ll}
\psi_{ \pm}^{\mu}(\tau \pm \sigma)=\frac{1}{\sqrt{2}} \sum_{r \in \mathbb{Z}} \psi_{r}^{\mu} \epsilon^{-i r(\tau \pm \sigma)} & \mathrm{R}-\text { boundary condition } \\
\psi_{ \pm}^{\mu}(\tau \pm \sigma)=\frac{1}{\sqrt{2}} \sum_{r \in \mathbb{Z}+1 / 2} \psi_{r}^{\mu} \epsilon^{-i r(\tau \pm \sigma)} & \mathrm{NS}-\text { boundary condition }
\end{array}
$$

The Majorana condition requires

$$
\psi_{-r}^{\mu}=\left(\psi_{r}^{\mu}\right)^{\star}
$$

Note: Only the R sector gives a zero mode ψ_{0}^{μ} (that should lead to fermions).

Boundary conditions and mode expansion: closed strings

For closed strings the surface terms vanish when the boundary conditions are periodic or anti-periodic, separately, for each component of $\psi_{ \pm}^{\mu}$,

$$
\psi_{-}^{\mu}(\tau-\sigma)=\sum_{r} \psi_{r}^{\mu} \epsilon^{-2 i r(\tau-\sigma)} \quad \psi_{+}^{\mu}(\tau+\sigma)=\sum_{r} \bar{\psi}_{r}^{\mu} \epsilon^{-2 i r(\tau+\sigma)}
$$

with the mode index r constrained according to either R or NS conditions. The bar on $\bar{\psi}_{r}^{\mu}$ shouldn't be confused with the one in Dirac's equation.

Corresponding to the different pairings between left- and right-moving modes, there are four distinct closed string sectors that can be grouped according to the space-time nature of their quantum states:

$$
\begin{array}{lcc}
\mathrm{R}-\mathrm{R} & \text { and } \quad \mathrm{NS}-\mathrm{NS} & \text { (bosons) } \\
\mathrm{R}-\mathrm{NS} \quad \text { and } \quad \mathrm{NS}-\mathrm{R} & \text { (fermions) }
\end{array}
$$

The superstring has, as we will shortly prove, space-time fermions!
Not surprisingly, they come from the odd combination of boundary conditions.

Super Virasoro constraints: closed strings

The closed string mode expansion of the physical constraints are given by

$$
T_{--}\left(\xi^{-}\right)=\alpha^{\prime} \sum_{n=-\infty}^{\infty} L_{n} \epsilon^{-2 i n \xi^{-}} \quad T_{++}\left(\xi^{+}\right)=\alpha^{\prime} \sum_{n=-\infty}^{\infty} \bar{L}_{n} \epsilon^{-2 i n \xi^{+}}
$$

as well as for the current constraints:

$$
J_{-}\left(\xi^{-}\right)=\alpha^{\prime} \sum_{r} \boldsymbol{G}_{r} \epsilon^{-2 i r \xi^{-}} \quad J_{+}\left(\xi^{+}\right)=\alpha^{\prime} \sum_{r} \overline{\boldsymbol{G}}_{r} \epsilon^{-2 i r \xi^{+}}
$$

where, inverting the above expressions, the super-Virasoro generators read

$$
\begin{aligned}
& L_{n}=\frac{1}{2} \sum_{m=-\infty}^{\infty} \alpha_{n-m} \cdot \alpha_{m}+\frac{1}{4} \sum_{r}(2 r-n) \psi_{n-r} \cdot \psi_{r} \\
& G_{r}=\sum_{m=-\infty}^{\infty} \alpha_{m} \cdot \psi_{r-m} \quad \quad \text { (analogous for } \bar{L}_{n} \text { and } \bar{G}_{r} \text {) }
\end{aligned}
$$

These expressions result from mode expansion of the world-sheet fields.

Normal ordering and zero-point energy

Going quantum, we have to be careful about normal ordering of operators:

$$
L_{n}=\frac{1}{2} \sum_{m=-\infty}^{\infty}: \alpha_{n-m} \cdot \alpha_{m}:+\frac{1}{4} \sum_{r}(2 r-n): \psi_{n-r} \cdot \psi_{r}:
$$

an ambiguity arising for L_{0} (and \bar{L}_{0}).
As before, the constraints must be imposed through a physical state condition

$$
\left.\left.\left.L_{m>0} \mid \text { phys }\right\rangle=0 \quad G_{r>0} \mid \text { phys }\right\rangle=0 \quad\left(L_{0}-a\right) \mid \text { phys }\right\rangle=0
$$

(same for \bar{L}_{m} and \bar{G}_{r}) for a given c-number a that we shall determine.
This computation, as for the bosonic string, is better performed in space-time light-cone coordinates

$$
x^{ \pm}:=\frac{1}{\sqrt{2}}\left(x^{0} \pm x^{D-1}\right) \quad \psi^{ \pm}:=\frac{1}{\sqrt{2}}\left(\psi^{0} \pm \psi^{D-1}\right)
$$

while x^{i} and ψ^{i} are the remaining space-like coordinates of the superstring.

Light-cone gauge

Recall that in the bosonic string, as we will do now, we gauged away α_{n}^{+}by choosing the light-cone gauge $\tau \sim x^{+}$. We shall take at the same time $\psi^{+}=0$ if we want to be consistent with world-sheet supersymmetry.

Given that $\partial_{+} x^{+}=\frac{1}{2} p^{+}$and $\psi^{+}=0$, we can solve for x^{-}and ψ^{-}

$$
\partial_{+} x^{-}=\frac{1}{\alpha^{\prime} p^{+}}\left(\partial_{+} x^{i} \partial_{+} x^{i}+\frac{i}{2} \psi^{i} \partial_{+} \psi^{i}\right) \quad \psi^{-}=\frac{2}{\alpha^{\prime} p^{+}} \psi^{i} \partial_{+} x^{i}
$$

in terms of the space-like components. This implies for the oscillators

$$
\begin{array}{ll}
\alpha_{n}^{-}=\frac{1}{\sqrt{2 \alpha^{\prime}} p^{+}}\left[\sum_{m=-\infty}^{\infty}: \alpha_{n-m}^{i} \alpha_{m}^{i}:+\frac{1}{2} \sum_{r}(2 r-n): \psi_{n-r}^{i} \psi_{r}^{i}:-2 a \delta_{n}\right] \\
\psi_{r}^{-}=\sum_{m=-\infty}^{\infty} \alpha_{m}^{i} \psi_{r-m}^{i} & \text { (analogous for } \bar{\alpha}_{n}^{-} \text {and } \bar{\psi}_{r}^{-} \text {) }
\end{array}
$$

The same computations can be performed in the case of open strings.

Super Virasoro algebra

By relying in the commutation relation of the x^{μ} and the anti-commutators

$$
\left\{\psi_{r}^{\mu}, \psi_{s}^{\nu}\right\}=\delta_{r+s, 0} \eta^{\mu \nu}
$$

it can be shown that L_{n} and G_{r} generate the $\mathcal{N}=1$ supersymmetric extension of the Virasoro algebra:

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c}{12} A(n) \delta_{n+m, 0} \\
{\left[L_{n}, G_{r}\right] } & =\frac{1}{2}(n-2 r) G_{n+r} \Rightarrow \operatorname{Osp}(1 \mid 2) \text { subalgebra for NS } \\
\left\{G_{r}, G_{s}\right\} & =2 L_{r+s}+\frac{c}{3} B(r) \delta_{r+s, 0}
\end{aligned}
$$

- $A(n)=n^{3}-n$ and $B(r)=r^{2}-1 / 4$ for the NS sector,
- $A(n)=n^{3}$ and $B(r)=r^{2}$ for the R sector.
$c=D+\frac{D}{2}$ is the total contribution to the conformal anomaly.

Super Virasoro algebra: the conserved angular momentum

The densities of momentum and angular momentum along the string are Noether currents

$$
P_{\alpha}^{\mu}=\partial_{\alpha} x^{\mu} \quad J_{\alpha}^{\mu \nu}=x^{\mu} \partial_{\alpha} x^{\nu}-x^{\nu} \partial_{\alpha} x^{\mu}+i \bar{\psi}^{\mu} \rho_{\alpha} \psi^{\nu}
$$

Inserting the mode expansions for x^{μ} and ψ^{μ}

$$
J^{\mu \nu}=\int_{0}^{\pi} J_{\tau}^{\mu \nu} d \sigma=J_{B}^{\mu \nu}+J_{F}^{\mu \nu}=\ell^{\mu \nu}+E^{\mu \nu}+J_{F}^{\mu \nu}
$$

where

$$
\begin{gathered}
\ell^{\mu \nu}=x^{\mu} p^{\nu}-x^{\nu} p^{\mu} \quad E^{\mu \nu}=-i \sum_{n=1}^{\infty} \frac{1}{n}\left(\alpha_{-n}^{\mu} \alpha_{n}^{\nu}-\alpha_{-n}^{\nu} \alpha_{n}^{\mu}\right) \\
J_{F}^{\mu \nu}=-i \sum_{r \geq 0}\left(\psi_{-r}^{\mu} \psi_{r}^{\nu}-\psi_{-r}^{\nu} \psi_{r}^{\mu}\right) \quad \mathrm{NS} \\
J_{F}^{\mu \nu}=-\frac{i}{2}\left[\psi_{0}^{\mu}, \psi_{0}^{\nu}\right]-i \sum_{k=1}^{\infty}\left(\psi_{-k}^{\mu} \psi_{k}^{\nu}-\psi_{-k}^{\nu} \psi_{k}^{\mu}\right) \quad \mathrm{R}
\end{gathered}
$$

Mass spectrum of the open string

As in the bosonic string case, we can define a number operator as

$$
\begin{gathered}
N:=\sum_{m=1}^{\infty} \alpha_{-m}^{i} \alpha_{m}^{i}+\sum_{r>0} r \psi_{-r}^{i} \psi_{r}^{i} \\
L_{0}=-\alpha^{\prime} M^{2}+N \quad \Rightarrow \quad M^{2}=\frac{1}{\alpha^{\prime}}(n-a) \\
\text { since } \left.\left.\left.\left(L_{0}-a\right) \mid \text { phys }\right\rangle=0 \text { and } N \mid \text { phys }\right\rangle=n \mid \text { phys }\right\rangle .
\end{gathered}
$$

The open string spectrum of states has two independent NS and R sectors. Let us start by analyzing the NS sector.

The NS Fock-space unique nondegenerate ground state $|k ; 0\rangle_{\text {NS }}$ satisfies

$$
\alpha_{m>0}^{\mu}|k ; 0\rangle_{\mathrm{NS}}=\psi_{r>0}^{\mu}|k ; 0\rangle_{\mathrm{NS}}=0 \quad \alpha_{0}^{\mu}|k ; 0\rangle_{\mathrm{NS}}=\sqrt{2 \alpha^{\prime}} k^{\mu}|k ; 0\rangle_{\mathrm{NS}}
$$

Since $N|k ; 0\rangle_{\text {NS }}=0$, this vacuum state would be tachyonic for $a>0$:

$$
M^{2}=-\frac{a}{\alpha^{\prime}} \quad \text { as for the bosonic string! }
$$

Determination of the normal ordering constant

In order to evaluate a, we must reorder L_{0} :

$$
L_{0}=\frac{1}{2} \sum_{m=-\infty}^{\infty} \alpha_{-m}^{i} \alpha_{m}^{i}+\frac{1}{2} \sum_{r=-\infty}^{\infty}\left(r+\frac{1}{2}\right) \psi_{-r-1 / 2}^{i} \psi_{r+1 / 2}^{i}
$$

Taking into account that $\left[\alpha_{m}^{i}, \alpha_{n}^{j}\right]=m \delta^{i j} \delta_{m n}$ and $\left\{\psi_{-s}^{i}, \psi_{t}^{j}\right\}=\delta^{i j} \delta_{s t}$,

$$
L_{0}=-\alpha^{\prime} M^{2}+N+\frac{D-2}{2} \sum_{m=1}^{\infty} m-\frac{D-2}{2} \sum_{r=0}^{\infty}\left(r+\frac{1}{2}\right)
$$

Thus, we conclude that, since $\left(L_{0}-a\right) \mid$ phys $\rangle=0$,

$$
a_{\mathrm{NS}}=-\frac{D-2}{2}\left[\sum_{m=1}^{\infty} m-\sum_{r=0}^{\infty}\left(r+\frac{1}{2}\right)\right]
$$

in the NS sector. This expression demands regularization.
However, we can realize at this point that $a_{R}=0$ (the magic of SUSY!).

Regularized infinite sum

It is useful to compute in general (for $\alpha>0$; for the bosonic string, $\alpha=0$),

$$
Z_{\alpha}=\frac{1}{2} \sum_{n=0}^{\infty}(n+\alpha)=-\frac{1}{24}+\frac{1}{4} \alpha(1-\alpha)
$$

as seen from the $\epsilon \rightarrow 0$ limit of the finite part of

$$
\begin{aligned}
Z_{\alpha}(\epsilon) & =\frac{1}{2} \sum_{n=0}^{\infty}(n+\alpha) e^{-(n+\alpha) \epsilon}=-\frac{1}{2} \frac{d}{d \epsilon} \sum_{n=0}^{\infty} e^{-(n+\alpha) \epsilon}=-\frac{1}{2} \frac{d}{d \epsilon}\left(\frac{e^{-\alpha \epsilon}}{1-e^{-\epsilon}}\right) \\
& =-\frac{1}{2} \frac{d}{d \epsilon}\left[\left(1-\alpha \epsilon+\frac{1}{2} \alpha^{2} \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)\right)\left(\frac{1}{\epsilon}+\frac{1}{2}+\frac{1}{12} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)\right)\right] \\
& =-\frac{1}{2} \frac{d}{d \epsilon}\left[\frac{1}{\epsilon}+\frac{1}{2}(1-2 \alpha)+\frac{1}{12}\left(1-6 \alpha+6 \alpha^{2}\right) \epsilon+\mathcal{O}\left(\epsilon^{2}\right)\right] \\
& =\frac{1}{2 \epsilon^{2}}-\frac{1}{24}+\frac{1}{4} \alpha(1-\alpha)+\mathcal{O}(\epsilon)
\end{aligned}
$$

The critical dimension

With this regularization we can confirm that $a_{\mathrm{R}}=0$, and

$$
a_{\mathrm{NS}}=(D-2)\left(Z_{1 / 2}-Z_{0}\right)=\frac{D-2}{16} \quad \Rightarrow \quad a_{\mathrm{NS}}=\frac{1}{2}
$$

The tachyonic vacuum of the NS sector see also GSW, end of §4.2.2 and §4.3.1

$$
M^{2}=-\frac{D-2}{16 \alpha^{\prime}}
$$

The first excited level can be constructed by acting with $\psi_{-\frac{1}{2}}^{i}$ on $|k ; 0\rangle_{\mathrm{NS}}$,

$$
N\left(\psi_{-\frac{1}{2}}^{i}|k ; 0\rangle_{\mathrm{NS}}\right)=\frac{1}{2}\left(\psi_{-\frac{1}{2}}^{i}|k ; 0\rangle_{\mathrm{NS}}\right)
$$

Thus, its mass can be readily determined to be

$$
M^{2}=\frac{1}{2 \alpha^{\prime}}\left(1-\frac{D-2}{8}\right) \quad \Rightarrow \quad D=10
$$

This vector has $D-2$ components; in a relativistic theory it must be massless (describe the physical polarizations of an open string photon field $A_{\mu}(x)$).

The open string spectrum

The NS sector of the RNS superstring is quite reminiscent of the bosonic string spectrum.

Indeed, all NS states are space-time bosons: they transform in appropriate irreducible representations of $S O(8)$, which is the Little group of $S O(1,9)$.

In the R sector there are zero modes ψ_{0}^{μ} which satisfy the 10d Dirac algebra!

$$
\left\{\psi_{0}^{\mu}, \psi_{0}^{\nu}\right\}=\eta^{\mu \nu}
$$

As announced, the zero modes can be regarded as Dirac matrices,

$$
\psi_{0}^{\mu}=\frac{1}{\sqrt{2}} \Gamma^{\mu} \quad \Rightarrow \quad \text { degenerate ground state }
$$

This is the origin of space-time fermions in the superstring.
In particular they are finite dimensional operators: all states in the R sector should be space-time fermions in order to furnish representation spaces on which these operators can act.

