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The vacuum energy of a scalar field

Let us start from the simplest case of a massive scalar field in D dimensions,

S =

∫
dDx

(
1
2
∂µφ∂

µφ− 1
2

M2φ2
)
.

After an Euclidean rotation, the path integral defines the vacuum energy, Z ,

e−Z =

∫
Dφe−SE = det−1/2(−∆ + M2) ⇒ Z =

1
2

log det (−∆ + M2)

We can parameterize the right hand side as

Z = −1
2

∫ ∞
ε

dt
t

trH
(

e−t (−∆+M2)
)

where ε is an UV cutoff and t is a Schwinger parameter.

Using the momentum basis, we can diagonalize the kinetic operator

Z = −V
2

∫ ∞
ε

dt
t

e−t M2
∫

dDp
(2π)D e−t p2
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The vacuum energy of a supersymmetric theory

Performing the Gaussian momentum integral,

Z = − V
2(4π)D/2

∫ ∞
ε

dt
tD/2+1 e−t M2

If we carry on the same computation for a massive Dirac fermion,

Z =
2D/2 V

2(4π)D/2

∫ ∞
ε

dt
tD/2+1 e−t M2

due to the Grassmannian nature of the fermionic path integral.

Since Z is only sensitive to the physical modes, proportional to their number,

Z = − V
2(4π)D/2

∫ ∞
ε

dt
tD/2+1 StrH e−t M2

Thus, for the bosonic string we should have

Z = − V
2(4π)13

∫ 1/2

−1/2
ds
∫ ∞
ε

dt
t14 trH e−

2
α′ (N+N̄−2)t+2πi(N−N̄)s

the last term introducing a δ-function constraint: N = N̄ (level matching).
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1-loop closed (bosonic) string vacuum amplitude

If we define the complex Schwinger parameter,

τ = τ1 + iτ2 = s + i
t
α′π

and letting q = e2πiτ , the previous expression can be rewritten as

Z = − V
2(4π2α′)13

∫ 1/2

−1/2
dτ1

∫ ∞
ε

dτ2

τ14
2

trH
(

qN−1 q̄N̄−1
)

Now, the Feynman graph describing a closed string state which propagates in
time and returns back to its initial state is a torus

time!
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The rectangular torus

The analytic identifications that lead to the rectangular torus are

z ∼ z + L1 , z ∼ z + L2 .

The fundamental domain is 0 ≤ Re z < L1, 0 ≤ Im z < L2.

The identification being analytic, the torus is a Riemann surface.

By the trivial conformal map w = z/L1, we get

w ∼ w + 1 , w ∼ w + iT , T = L2/L1 ,

the rectangular torus has just one parameter, T .

Rectangular tori with different T can be conformally equivalent.
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The rectangular torus

Consider a torus with T < 1. The map w̃ = −iw , followed by the scaling
η = w̃/T and the lifting up z = η + i/T :

Tori with parameters T and 1/T are conformally equivalent!

The moduli space of rectangular tori can be chosen as 1 ≤ T <∞.

String amplitudes do not seem to give rise to UV problems!

But tori can be twisted...

José D. Edelstein (USC) Lecture 8: 1-loop vacuum amplitude 5-mar-2013 6 / 23



The torus

One can glue the bottom and top edges of the cylinder with a twist. Take two
(non-parallel) complex numbers w1 and w2, such that Im(w2/w1) > 0.

The torus is obtained by the identifications, T 2 = C/Λ(w1,w2),

z ∼ z + w1 , z ∼ z + w2 ,

the fundamental domain being the parallelogram shaded in the figure.

We can rescale w = z/w1, such that

τ ≡ w2

w1
, Imτ > 0 ,

and the identifications result w ∼ w + 1 and w ∼ w + τ , where τ ∈ H.
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The torus

Let us see the twitting of tori with Re τ 6= 0. Making use of w ∼ w + 1, we can
drive the parallelogram rectangular.

The identification of horizontal lines is, however, shifted (twisted cylinder).

The twist angle, θ, associated with the shift of point P, is

θ = 2π Re τ .

What happens if we let the twist angle to increase by 2π?
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The torus

This amounts to T : τ → τ + 1. These tori are in fact the same:

The shift modifies the fundamental region but does not change the torus.

Twist angles beyond −π < θ ≤ π do not yield new tori.

While τ ∈ H, the space of inequivalent tori is much smaller. T shows that any
infinite vertical strip of unit width is enough,

S0 ≡
{
−1

2
< Re τ ≤ 1

2
, Im τ > 0

}
.

What happens if we perform the transformation S : τ → −1/τ?
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The torus

If we first do z̃ = z/τ , which is a rigid rotation plus a uniform scaling, followed
by a rigid translation, z ′ = z̃ − 1/τ ,

the final parallelogram is associated with a torus of parameter −1/τ .

The torus is given by a flat metric and a complex structure τ ∈ C, living in a
fundamental domain that we will shortly determine.

τ specifies the shape of the torus which cannot be changed by conformal
transformations or any local change of coordinates.
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The torus: modular group

The full family of equivalent tori can be reached by modular transformations,
which are combination of the operations T and S,

T : τ → τ + 1 S : τ → −1
τ

T S T : τ → τ

τ + 1

T and S obey the relations: S2 = (S T)3 = 1.

They generate the modular group SL(2,Z) of the torus,

τ → a τ + b
c τ + d

(
a b
c d

)
∈ SL(2,Z) ,

which is a linear fractional transformation of τ .
They correspond to using Λ(w1,w2) or Λ(w ′1,w

′
2), generated by

w ′1 = a w1 + b w2 w ′2 = c w1 + d w2 a,b, c,d ∈ Z

with ad − bc = 1 (the area of the parallelogram): both lattices are the same.
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Moduli space of the torus

We should sum only conformally inequivalent tori defining the moduli space

MT 2 = H/PSL(2,Z) PSL(2,Z) = SL(2,Z)/Z2

where H is the upper half plane and Z2 takes into account of the equivalence
of an SL(2,Z) matrix and its negative.

We have to identify a fundamental region, F , of the τ plane, such that any
point in H can be mapped to F through an element of SL(2,Z):

F
SL (2 , Z )

!1 1!1/2 1/20

i

Im(" )

Re( " )

"

Figure: Here, F ={− 1
2 ≤ τ1 ≤ 0, |τ |2 ≥ 1} ∪ {0 < τ1 <

1
2 , |τ |

2 > 1}. Any point outside
F can be mapped into the interior by a modular transformation.
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1-loop closed (bosonic) string vacuum amplitude

We must do the path integral of the 1-loop amplitude by integrating on the
fundamental modular domain, F .

As previously mentioned, we start by computing it for the bosonic string,

Z = − V
2(4π2α′)13

∫
F

d2τ

Im τ2
1

Im τ12 trH
(

qN−1 q̄N̄−1
)

Now, recall the generating function that led us to the computation of the
degeneracy of states,

G(q) := trH qN =
∞∏

n=1

(1− q n)
−24

.

Thus, since G(q) = q η(τ), the path integral at 1-loop reads

Z =

∫
F

d2τ
1
τ12

2

1
qq̄

∣∣∣∣∣
∞∏

n=1

(1− qn)
−24

∣∣∣∣∣
2

=

∫
F

d2τ

Im τ2
1

Im τ12 |η(τ)|−48
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Modular invariance of the path integral

where we have introduced the Dedekind function

η(τ) = q
1

24

∞∏
n=1

(1− qn)

with the modular transformation properties

η(τ + 1) = η(τ)

η

(
−1
τ

)
=
√
−i τ η(τ)

It can be readily shown that Z is modular invariant.

However, when actually computed, Z diverges as a consequence of the
tachyonic instability of the bosonic string theory.

How does this generalizes to the case of the RNS superstring?
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Fermions on a torus and spin structures

Fermions on the torus are specified by a choice of spin structure which is
simply a choice of boundary conditions as ξ0 → ξ0 + 2π and ξ1 → ξ1 + 2π.
Notice that this generalizes easily to higher genus cases.

There are four possible spin structures in all, which we denote symbolically

ξ0

ξ1∣∣∣∣ ∣∣∣∣ = +

+∣∣∣∣ ∣∣∣∣ , +

−∣∣∣∣ ∣∣∣∣ , −
+∣∣∣∣ ∣∣∣∣ , −

−∣∣∣∣ ∣∣∣∣
where the squares denote the result of performing the functional integral over
fermions with the given fixed spin structure.

Let us focus on the right-moving sector.

The NS (R) sector corresponds to anti-periodic (periodic) boundary conditions
along the string in the ξ1 direction.

In the time direction ξ0, fermions are anti-periodic, in accordance with the
standard Euclidean path integral formulation of finite temperature QFT.
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Spin structure contributions to the path integral

In order to flip the boundary condition, we insert the Klein operator (−1)F

(since it anticommutes with ψµ) in the traces defining the partition function.

The fermionic spin structure contributions to the path integral are, thereby,

+

+∣∣∣∣ ∣∣∣∣ → TrR

(
(−1)F e−2πτ2H

)
−

+∣∣∣∣ ∣∣∣∣ → TrR

(
e−2πτ2H

)

−
−∣∣∣∣ ∣∣∣∣ → TrNS

(
e−2πτ2H

)
+

−∣∣∣∣ ∣∣∣∣ → TrNS

(
(−1)F e−2πτ2H

)
But the modular group in general changes the femionic boundary conditions.
We know that the final result, since it involves a partition function on a torus,
must be modular invariant.

Let us study the action of the modular group on the different spin structures.
We can focus on the operations T and S.
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Modular invariance of spin structures

T: τ → τ + 1 induces an additional periodic shift from ξ1 along ξ0. It therefore
flips the ξ0 boundary condition whenever the ξ1 is anti-periodic.

−
+∣∣∣∣ ∣∣∣∣ T−→ −

+∣∣∣∣ ∣∣∣∣
+

+∣∣∣∣ ∣∣∣∣ T−→ +

+∣∣∣∣ ∣∣∣∣
−
−∣∣∣∣ ∣∣∣∣ T−→ +

−∣∣∣∣ ∣∣∣∣
+

−∣∣∣∣ ∣∣∣∣ T−→ −
−∣∣∣∣ ∣∣∣∣

−
+∣∣∣∣ ∣∣∣∣ S−→ +

−∣∣∣∣ ∣∣∣∣
+

+∣∣∣∣ ∣∣∣∣ S−→ +

+∣∣∣∣ ∣∣∣∣
−
−∣∣∣∣ ∣∣∣∣ S−→ −

−∣∣∣∣ ∣∣∣∣
+

−∣∣∣∣ ∣∣∣∣ S−→ −
+∣∣∣∣ ∣∣∣∣

S: τ → −1/τ induces a switch (ξ0, ξ1)→ (−ξ1, ξ0). Thus, both periodicities
are simply exchanged. The (+,+) spin structure is modular invariant.
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The 1-loop partition function for the RNS superstring

The amplitude corresponding to (+,+) vanishes: it contains a Grassmann
integral over the constant fermionic zero-modes but H is independent of them.

This is the only amplitude with fermionic zero-modes. For the remaining spin
structures, the unique modular invariant combination is given by

−
−∣∣∣∣ ∣∣∣∣ − +

−∣∣∣∣ ∣∣∣∣ − −
+∣∣∣∣ ∣∣∣∣

The 1-loop, modular invariant partition function for the right-moving fermionic
contributions is therefore given by

ZRNS =
1
2

TrNS

[(
1− (−1)F

)
qL0− 1

2

]
− 1

2
TrR

(
qL0
)

Adding the vanishing contribution of (+,+), the amplitude can be succinctly
as a trace over the full right-moving fermionic Hilbert space as

ZRNS = TrNS⊕R

(
P±GSO qL0−a)
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Modular invariance

We arrived at a beautiful interpretation of the GSO projection, which ensures
vacuum stability and spacetime supersymmetry of the quantum string theory,

ZRNS = TrNS⊕R

(
P±GSO qL0−a)

Geometrically, it is simply the modular invariant sum over spin structures. This
interpretation also generalizes to higher-loop amplitudes.

The total superstring amplitude is given by the product of ZRNS with Zbos in ten
dimensions, along with their left-moving counterparts.

It is an exercise reminiscent of the computation of the spectrum degeneracy
that finally shows that the 1-loop closed RNS superstring amplitude vanishes
thanks to Jacobi.

This implies that the full superstring vacuum amplitude vanishes which
provides very strong evidence in favor of space-time supersymmetry in string
theory in ten dimensions.
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The Ramond-Ramond sector

Recall that for open strings there are two possible R sector GSO projections
given by the operators

P±GSO :=
1
2

(
1± Γ11 (−1)

P∞
r=1 ψ−r ·ψr

)
the sign choice selecting a Ramond ground state with ± chirality,

Γ11 |ψ(0)
(±)〉R = ±|ψ(0)

(±)〉R

as well as the corresponding massive tower of states. Both chiralities, though,
lead to the same physics.

In the closed string sector the situation is subtler since left- and right-movers
are combined together with their particular choices of chiralities. The GSO
projection is performed separately in both sectors.

Depending on the relative sign, there are two inequivalent possibilities that
correspond to the relative chirality of the ground states.
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Type II suprestring theories

There are, thus, two possible string theories that we can construct in this way,
Type IIA and Type IIB:

Type IIA: We take the opposite GSO projection on both sides; the spinors
are of opposite chirality,

|ψ(0)
+(+)〉R |ψ(0)

−(−)〉R

and hence construct the whole R-R sector of the spectrum by further
action of the creation operators on these states. The resulting theory is
non-chiral.

Type IIB: We impose the same GSO projection on both sides,

|ψ(0)
+(+)〉R |ψ(0)

−(+)〉R

The R-R sector of the spectrum by further action of the creation operators
on these states. This leads to a chiral theory.
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Massless spectrum in the RR-sector of type II superstring theories

As discussed earlier, the two irreducible, Majorana-Weyl representations of
Spin(10) are the spinor 16s and its conjugate 16c .

From a group theoretic perspective then, the massless states of the two R-R
sectors are characterized by their Clebsch-Gordan decompositions:

Type IIA: 16s ⊗ 16c = [0]⊕ [2]⊕ [4].

Type IIB: 16s ⊗ 16s = [1]⊕ [3]⊕ [5]+.

Here [n] denotes the irreducible n-times antisymmetrized representation of
Spin(10) given by ψ̄ Γµ1···µn ψ, where ψ is a spinor in the relevant irreducible
representation.

They corresponds to completely antisymmetric tensors of rank n, or n-forms.
The + subscript indicates a self-duality condition.
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Other critical string theories

Type I: Can be obtained from a projection of the Type IIB that keeps only
the diagonal sum of the two gravitinos Ψµ and Ψ′µ.

It has only N = 1 space-time supersymmetry.

It is a theory of unoriented string world-sheets.

In the open string sector, anomaly cancellation singles out SO(32) as the
only possible (Chan-Paton) gauge group.

Heterotic string theory: It comprises a heterosis of the d = 26 bosonic
string for the left-movers and the d = 10 superstring for the right-movers.

The remaining 16 right-moving degrees of freedom required by N = 1
supersymmetry are “internal” ones which come from a 16-dimensional,
modular invariant lattices.

There are only two such lattices, corresponding to the weight lattices of
the Lie groups E8 × E8 and SO(32).

There is a total of five critical string theories.
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