Lecture 9: RR-sector and D-branes

José D. Edelstein
University of Santiago de Compostela

String Theory
Santiago de Compostela, March 6, 2013

RR fields couple to extended objects

Recall that the antisymmetric tensor $B_{\mu \nu}$ in the NS-NS sector couples directly to the string world-sheet: the string carries (electric) charge w.r.t. $B_{\mu \nu}$,

$$
S=-\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} \xi \epsilon^{\alpha \beta} B_{\mu \nu}(X) \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}
$$

The Lagrangian changes by a total derivative under the gauge symmetry,

$$
B_{\mu \nu} \rightarrow B_{\mu \nu}+\partial_{\mu} \Lambda_{\nu}-\partial_{\nu} \Lambda_{\mu}
$$

In electromagnetism, the gauge invariant degrees of freedom are contained in the field strength, $F=d A$. Similarly, $H=d B$,

$$
H_{\mu \nu \rho}=\partial_{\mu} B_{\nu \rho}+\partial_{\nu} B_{\rho \mu}+\partial_{\rho} B_{\mu \nu}
$$

However, the situation for the R-R potentials $C^{(n)}$ is very different, because the vertex operators for the R-R states involve only the $F^{(n+1)}$.

Thus, only the field strengths, not the potentials, would couple to the string.
Thus elementary, perturbative string states cannot carry any charge with respect to the R-R gauge fields $C^{(n)}$.

RR fields couple to extended objects

We are thereby forced to search for non-perturbative degrees of freedom which couple to these potentials.

Clearly, they must be extended objects that sweep out a $p+1$-dimensional world-volume as they propagate in time, generalizing the notion of a string,

$$
q \int_{\mathcal{W}_{n}} d^{n} \xi \epsilon^{a_{0} \cdots a_{n-1}} \frac{\partial x^{\mu_{1}}}{\partial \xi^{a_{0}}} \cdots \frac{\partial x^{\mu_{n}}}{\partial \xi^{a_{n-1}}} C_{\mu_{1} \cdots \mu_{n}}^{(n)} \quad \longrightarrow \quad q \int_{\mathcal{W}_{n}} C^{(n)} .
$$

in complete analogy with electromagnetic and B-field minimal couplings.
The massless states of the R-R sectors are given by the CG decompositions:

- Type IIA: $\quad \mathbf{1 6}_{s} \otimes \mathbf{1 6}_{c}=[0] \oplus[2] \oplus[4]$.
- Type IIB: $\quad 16_{s} \otimes \mathbf{1 6}_{s}=[1] \oplus[3] \oplus[5]_{+}$.

They corresponds to completely antisymmetric tensors of rank n, or n-forms. The + subscript indicates a self-duality condition.

Electric and magnetic coupling of extended objects

Consider $F^{(p+2)}$, a $p+2$-form representing an antisymmetric tensor field with $p+2$ indices in D dimensions.

It is the field strength of a potential, $F^{(p+2)}=d C^{(p+1)}$, that electrically couples to a $p+1$-dimensional object, \mathcal{W}_{p+1},

$$
\mu_{p} \int_{\mathcal{W}_{p+1}} C^{(p+1)}
$$

\mathcal{W}_{p+1} being the world-volume of an extended object called p-brane.
The Hodge dual of $F^{(p+2)}$ is

$$
\tilde{F}^{(D-p-2)}={ }^{\star} F^{(p+2)}=d \tilde{C}^{(D-p-3)} .
$$

Its potential couples magnetically to the extended object \mathcal{W}_{D-p-3},

$$
\mu_{D-p-4} \int_{\mathcal{W}_{D-p-3}} \tilde{C}^{(D-p-3)} .
$$

Extended objects in type II superstring theory

In superstring theory, $D=10$ thus we have two possible couplings

$$
F^{(n+2)} \text { couples to } \begin{cases}\text { electric } & n \text { branes } \\ \text { magnetic } & 6-n \text { branes } .\end{cases}
$$

Recall that the $F^{(n)}$ forms resulted from the tensor product of two MW spinor representations in ten dimensions,

$$
F_{\mu_{1} \cdots \mu_{n}}^{(n)}={ }_{\mathrm{R}}\left\langle\psi_{+(\pm)}^{(0)}\right| \Gamma_{\left[\mu_{1} \cdots \mu_{n}\right]}\left|\psi_{-(\pm)}^{(0)}\right\rangle_{\mathrm{R}} .
$$

Because of GSO projection, the states $\left|\psi_{-(\pm)}^{(0)}\right\rangle_{\mathrm{R}}$ have definite Γ^{11} eigenvalue ± 1. Thus, given that

$$
\Gamma^{11} \Gamma^{\left[\mu_{1}\right.} \ldots \Gamma^{\left.\mu_{n}\right]}=\frac{(-1)^{\left[\frac{n}{2}\right]} n!}{(10-n)!^{2}} \epsilon^{\mu_{1} \cdots \mu_{n}} \nu_{1} \cdots \nu_{10-n}, \Gamma^{\left[\nu_{1}\right.} \cdots \Gamma^{\left.\nu_{10-n]}\right]},
$$

there is an isomorphism (electric-magnetic duality)

$$
F_{\mu_{1} \cdots \mu_{n}}^{(n)} \sim \epsilon^{\mu_{1} \cdots \mu_{n}} \nu_{\nu_{1} \cdots \nu_{10-n}} F^{(10-n)} \nu_{\nu_{1} \cdots \nu_{10-n}} .
$$

This identifies the representations $[n] \leftrightarrow[10-n]$; in particular, [5] is self-dual.

Branes in type IIA theory

Recall that, in type IIA: $\mathbf{1 6}_{s} \otimes \mathbf{1 6}_{c}=[0] \oplus[2] \oplus[4]$. Thus, there are even branes.

- In the NS-NS sector:

$$
H_{3} \text { couples to }\left\{\begin{array}{lll}
\text { electric } 1 \text { branes } & \Rightarrow \text { F1-string } \\
\text { magnetic } 5 \text { branes } & \Rightarrow & \text { NS5-brane }
\end{array}\right.
$$

- In the R-R sector:

$$
\begin{aligned}
& F_{[2]} \text { couples to } \begin{cases}\text { electric } 0 \text { branes } & \Rightarrow \text { D0-brane } \\
\text { magnetic } 6 \text { branes } & \Rightarrow \text { D6-brane }\end{cases} \\
& F_{[4]} \text { couples to } \begin{cases}\text { electric } 2 \text { branes } & \Rightarrow \text { D2-brane } \\
\text { magnetic } 4 \text { branes } & \Rightarrow \text { D4-brane }\end{cases}
\end{aligned}
$$

Branes in type IIB theory

 In type IIB: $16_{s} \otimes 16_{s}=[1] \oplus[3] \oplus[5]_{+}$. Thus, there are odd branes.- In the NS-NS sector:

$$
H_{3} \text { couples to }\left\{\begin{array}{lll}
\text { electric 1 branes } & \Rightarrow \text { F1-string } \\
\text { magnetic } 5 \text { branes } & \Rightarrow & \text { NS5-brane }
\end{array}\right.
$$

- In the R-R sector:

$$
\begin{aligned}
& F_{[1]} \text { couples to }\left\{\begin{array}{lll}
\text { electric }-1 \text { branes } & \Rightarrow \mathrm{D}(-1) \text {-brane } \\
\text { magnetic } 7 \text { branes } & \Rightarrow \text { D7-brane }
\end{array}\right. \\
& F_{[3]} \text { couples to }\left\{\begin{array}{lll}
\text { electric } 1 \text { branes } & \Rightarrow & \text { D1-brane } \\
\text { magnetic } 5 \text { branes } & \Rightarrow & \text { D5-brane }
\end{array}\right. \\
& F_{[5]} \text { couples to }\left\{\begin{array}{lll}
\text { electric } 3 \text { branes } & \Rightarrow & \text { D3-brane } \\
\text { magnetic } 3 \text { branes } & \Rightarrow & \text { D3-brane }
\end{array}\right.
\end{aligned}
$$

Since the $F_{[5]}$ is self-dual, full electromagnetic duality is in place.

Electric-magnetic duality

Let us recall how the story goes in Maxwell theory. In the absence of charges and currents,

$$
d F=0 \quad \text { and } \quad d^{\star} F=0
$$

where F is the 2 -form field strength describing electric and magnetic fields.
The equations are symmetric under the interchange of F and ${ }^{*} F$. Assuming that sources can be added in a symmetric fashion,

$$
d F={ }^{\star} J_{m} \quad \text { and } \quad d^{\star} F={ }^{\star} J_{e},
$$

we face Dirac's quantization condition: the wave function of an electrically charged particle moving in the field of a monopole is uniquely defined if

$$
e \cdot g \in 2 \pi \mathbb{Z}
$$

We have seen that our branes, D-branes, can both couple electrically or magnetically. Their charges are measured using Gauss' law.

The Dirac quantization condition has a straightforward generalization,

$$
\mu_{p} \cdot \mu_{6-p} \in 2 \pi \mathbb{Z}
$$

Type II low energy effective actions

Similarly to the bosonic case, the vanishing of the Weyl anomaly demands,

$$
\beta_{\mu \nu}(g)=\beta_{\mu \nu}(B)=\beta_{\mu \nu}(\Phi)=0,
$$

where these equations are covariant complicated expressions of the massless fields.

In type II superstrings we have, in addition, we should include the RR-forms in a way compatible with supersymmetry.

Thus, these equations coincide with those arising in ten dimensional theories of supergravity.

The number of supersymmetries is 32 . Whereas type IIB theory is chiral, type IIA is not. We will present their Lagrangians next.

Higher order α^{\prime} corrections would lead to higher powers of the curvature, as in the bosonic string.

Type IIA effective action

The Lagrangian of type IIA supergravity in the string frame reads

$$
\begin{aligned}
S_{I I A}= & \frac{1}{2 \kappa^{2}} \int e^{-2 \Phi}\left(d^{10} x \sqrt{-g} R+4 d \Phi \wedge \star d \Phi-\frac{1}{2} \frac{1}{3!} H_{[3]} \wedge \star H_{[3]}\right. \\
& \left.-\frac{1}{2}\left[\frac{1}{2!} F_{[2]} \wedge \star F_{[2]}+\frac{1}{4!} F_{[4]} \wedge \star F_{[4]}+B_{[2]} \wedge F_{[4]} \wedge F_{[4]}\right]\right),
\end{aligned}
$$

where

$$
F_{[2]}=d C_{[1]} \quad F_{[4]}=d C_{[3]}-C_{[1]} \wedge H_{[3]} \quad H_{[3]}=d B_{[2]}
$$

We can go to the Einstein frame by

$$
\left(g_{\mu \nu}\right)_{\text {string }}=g_{s}^{-1 / 2} e^{\Phi / 2}\left(g_{\mu \nu}\right)_{\text {Einstein }}
$$

where $g_{s}=e^{\Phi(r \rightarrow \infty)}$ is the string coupling constant. Then,

$$
\sqrt{|g|_{\text {string }}}=\left(g_{s}^{-1 / 2} e^{\Phi / 2}\right)^{5} \sqrt{|g|_{\text {Einstein }}}=g_{s}^{-5 / 2} e^{5 \phi / 2} \sqrt{|g|_{\text {Einstein }}} .
$$

Type IIA effective action

In general, for any p-form

$$
\left(F_{[p]} \wedge^{\star} F_{[p]}\right)_{\text {string }}=g_{s}^{p / 2} e^{-p \phi / 2}\left(F_{[p]} \wedge^{\star} F_{[p]}\right)_{\text {Einstein }} .
$$

The resulting action in the Einstein frame reads:

$$
\begin{aligned}
S_{I I A}^{E}= & \frac{1}{2 \kappa^{2}} \int\left(d^{10} x \sqrt{-g_{E}} R_{E}-\frac{1}{2} d \Phi \wedge \star d \Phi-\frac{1}{2} \frac{1}{3!} e^{-\phi} H_{[3]} \wedge \star H_{[3]}\right. \\
& \left.-\frac{1}{2}\left[\frac{1}{2!} e^{\frac{3}{2} \phi} F_{[2]} \wedge \star F_{[2]}+\frac{1}{4!} e^{\frac{1}{2} \phi} F_{[4]} \wedge \star F_{[4]}+B_{[2]} \wedge F_{[4]} \wedge F_{[4]}\right]\right) .
\end{aligned}
$$

Gravity is now canonically normalized, as well as the dilaton kinetic term, but the coupling with the R-R forms is more involved.

Notice that to compute the solution corresponding to a specific D-brane,

$$
S=\frac{1}{2 \kappa^{2}} \int d^{10} x \sqrt{-g}\left\{R-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} e^{a_{n} \phi} F_{n}^{2}\right\} .
$$

Type IIB effective action

The Lagrangian of type IIB supergravity in the string frame reads

$$
\begin{aligned}
S_{I I B}= & \frac{1}{2 \kappa^{2}} \int e^{-2 \phi}\left(d^{10} x \sqrt{-g} R+4 d \Phi \wedge \star d \Phi-\frac{1}{23!} H_{[3]} \wedge \star H_{[3]}\right) \\
& -\frac{1}{4 \kappa^{2}} \int\left(F_{[1]} \wedge \star F_{[1]}+\frac{1}{3!} F_{[3]} \wedge \star F_{[3]}+\frac{1}{2} \frac{1}{5!} F_{[5]} \wedge \star F_{[5]}\right. \\
& \left.\quad-C_{[4]} \wedge F_{[3]} \wedge H_{[3]}\right)
\end{aligned}
$$

where

$$
\begin{array}{ll}
F_{[1]}=d C_{[0]} & F_{[3]}=d C_{[2]}-C_{[0]} H_{[3]} \\
H_{[3]}=d B_{[2]} & F_{[5]}=d C_{[4]}-\frac{1}{2} C_{[2]} \wedge H_{[3]}+\frac{1}{2} B_{[2]} \wedge F_{[3]}
\end{array}
$$

supplemented by the additional on-shell constraint $F_{[5]}=\star F_{[5]}$.

Type IIB effective action

It can also be driven to its Einstein frame form,

$$
\begin{aligned}
S_{l \mid B}^{E}= & \frac{1}{2 \kappa^{2}} \int\left(d^{10} x \sqrt{-g_{E}} R_{E}-\frac{1}{2} d \phi \wedge \star d \Phi-\frac{1}{23!} e^{-\phi} H_{[3]} \wedge \star H_{[3]}\right. \\
& -\frac{1}{2}\left[e^{2 \Phi} F_{[1]} \wedge \star F_{[1]}+\frac{1}{3!} e^{\phi} F_{[3]} \wedge \star F_{[3]}+\frac{1}{2} \frac{1}{5!} F_{[5]} \wedge \star F_{[5]}\right] \\
& \left.\quad-C_{[4]} \wedge F_{[3]} \wedge H_{[3]}\right) .
\end{aligned}
$$

Again, to compute the solution corresponding to a specific D-brane,

$$
S=\frac{1}{2 \kappa^{2}} \int d^{10} x \sqrt{-g}\left\{R-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} e^{a_{n} \phi} F_{n}^{2}\right\} .
$$

We have $a_{3}=-1$ for the NS-NS 3-form, $H_{[3]}$, and $a_{n}=\frac{5-n}{2}$ for any RR n-form, $F_{[n]}$. Notice that for $n=5$, i.e., the self-dual D3-brane, the dilaton decouples.
Even the remaining string theories fit into this quite simple action.

D-branes as classical solutions

The equations of motion are:

$$
\begin{aligned}
& R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{1}{2}\left(\partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} g_{\mu \nu} \partial_{\lambda} \phi \partial^{\lambda} \phi\right)+\frac{1}{2(n-1)!} e^{a_{n} \phi} \tau_{\mu \nu}, \\
& \frac{1}{\sqrt{-g}} \partial_{\mu}\left(\sqrt{-g} g^{\mu \nu} \partial_{\nu} \phi\right)-\frac{1}{2} \frac{a_{n}}{n!} e^{a_{n} \phi} F_{n}^{2}=0, \\
& \frac{1}{(n-1)!} \frac{1}{\sqrt{-g}} \partial_{\mu}\left(\sqrt{-g} e^{a_{n} \phi} F^{\mu \nu_{2} \ldots \nu_{n}}\right)=0,
\end{aligned}
$$

where the electromagnetic stress-energy tensor reads

$$
\tau_{\mu \nu}=F_{\mu \lambda_{2} \ldots \lambda_{n_{l}}} F_{\nu}^{\lambda_{2} \ldots \lambda_{n_{I}}}-\frac{1}{2 n} g_{\mu \nu} F_{n}^{2} .
$$

The most general metric that incorporates all the symmetries is:

$$
d s^{2}=-B^{2} d t^{2}+C^{2} \delta_{i j} d y^{i} d y^{j}+F^{2} d r^{2}+G^{2} r^{2} d \Omega_{d-1}^{2} .
$$

with all the functions depending only on r.

D-branes as classical solutions

There is an extremal solution

$$
d s^{2}=H^{-\frac{2(7-p)}{\Delta}}\left(-d t^{2}+\delta_{i j} d y^{i} d y^{j}\right)+H^{\frac{2(p+1)}{\Delta}}\left(d r^{2}+r^{2} d \Omega_{d-1}^{2}\right) .
$$

with $\Delta=(p+1)(7-p)+4 a_{n}^{2}$ and

$$
H=1+\frac{\sqrt{\Delta}}{4(7-p)} \frac{Q}{r^{7-p}} .
$$

Now, electric solutions are those with $p=n-2$ whereas magnetic solutions have $p=8-n$. The dilaton reads

$$
e^{\phi}=H^{\frac{8 a_{p+2}}{\Delta}} \quad \text { or } \quad e^{\phi}=H^{-\frac{8 a_{8-p}}{\Delta}},
$$

whereas the R-R form

$$
F_{t y^{1} \ldots y^{p} r}=\frac{d}{d r} H^{-1} \quad \text { or } \quad F_{\theta_{1} \cdots \theta_{8-p}}=Q \omega_{8-p}
$$

the latter being proportional to the volume element of S^{8-p}.

The D3-brane

The solutions look simpler in the string frame,

$$
d s^{2}=H^{-\frac{1}{2}}\left(-d t^{2}+\delta_{i j} d y^{i} d y^{j}\right)+H^{\frac{1}{2}}\left(d r^{2}+r^{2} d \Omega_{5}^{2}\right) .
$$

for any p. The mass of these solutions can be computed

$$
M=|q| \quad q=\frac{L^{p} \Omega^{8-p}}{2 \kappa^{2}} Q ;
$$

they all saturate the BPS bound.
As mentioned earlier, the case $n=5$ (that is, $p=3$) is special. If we plug it into previous expressions, $a_{5}=0, \Delta=16$, and

$$
d s^{2}=\left(1+\frac{1}{4} \frac{Q}{r^{4}}\right)^{-\frac{1}{2}}\left(-d t^{2}+\delta_{i j} d y^{i} d y^{j}\right)+\left(1+\frac{1}{4} \frac{Q}{r^{4}}\right)^{\frac{1}{2}}\left(d r^{2}+r^{2} d \Omega_{5}^{2}\right)
$$

If we focus in the region close to the throat, $r \rightarrow 0$, the metric behaves as

$$
d s^{2} \sim r^{2}\left(-d t^{2}+\delta_{i j} d y^{i} d y^{j}\right)+r^{-2}\left(d r^{2}+r^{2} d \Omega_{5}^{2}\right)
$$

This is $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ with equal radii of curvature.

D-branes and boundary contributions

Let us come back to the gauge symmetry of (we set $2 \pi \alpha^{\prime}=1$)

$$
S=-\frac{1}{2} \int d^{2} \xi \epsilon^{\alpha \beta} B_{\mu \nu}(X) \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}
$$

If we perform the gauge symmetry transformation,

$$
\delta B_{\mu \nu}=\partial_{\mu} \Lambda_{\nu}-\partial_{\nu} \Lambda_{\mu}
$$

then the action transforms as

$$
\begin{gathered}
\delta S=-\int d^{2} \xi \epsilon^{\alpha \beta} \partial_{\mu} \Lambda_{\nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}=-\int d^{2} \xi \epsilon^{\alpha \beta} \partial_{\alpha} \Lambda_{\nu} \partial_{\beta} X^{\nu} \\
=-\int d \tau d \sigma\left(\partial_{\tau} \Lambda_{\nu} \partial_{\sigma} X^{\nu}-\partial_{\sigma} \Lambda_{\nu} \partial_{\tau} X^{\nu}\right) \\
=-\int d \tau d \sigma\left(\partial_{\tau}\left[\Lambda_{\nu} \partial_{\sigma} X^{\nu}\right]-\partial_{\sigma}\left[\Lambda_{\nu} \partial_{\tau} X^{\nu}\right]\right)
\end{gathered}
$$

the total derivative ∂_{τ} gives no boundary contribution but ∂_{σ} does!

D-branes and boundary contributions

From the point of view of the open strings, the D-branes are hypersurfaces where their end-points can lie,

$$
\delta S=\int d \tau d \sigma\left(\partial_{\sigma}\left[\Lambda_{\nu} \partial_{\tau} X^{\nu}\right]\right)=\left.\int d \tau\left[\Lambda_{\nu} \partial_{\tau} X^{\nu}\right]\right|_{\sigma=0} ^{\sigma=\pi}
$$

Now, we have to distinguish between $X^{\mu}=\left(X^{m}, X^{a}\right)$, where $m=0,1, \ldots, p$,

$$
\delta S=\left.\int d \tau\left[\Lambda_{m} \partial_{\tau} X^{m}+\Lambda_{a} \partial_{\tau} X^{a}\right]\right|_{\sigma=0} ^{\sigma=\pi}=\left.\int d \tau\left[\Lambda_{m} \partial_{\tau} X^{m}\right]\right|_{\sigma=0} ^{\sigma=\pi}
$$

since $\partial_{\tau} X^{a}=0$ at both end-points.
Gauge invariance fails at the end-points of the string! To restore it, we must add a couple of terms that give electric charge to the string end-points,

$$
S=-\frac{1}{2} \int d^{2} \xi \epsilon^{\alpha \beta} B_{\mu \nu}(X) \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}+\left.\int d \tau A_{m}(X) \frac{d X^{m}}{d \tau}\right|_{\sigma=0} ^{\sigma=\pi}
$$

The string end-points are oppositely charged and $F_{m n} \rightarrow \mathcal{F}_{m n}=F_{m n}+B_{m n}$.

