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RR fields couple to extended objects

Recall that the antisymmetric tensor Bµν in the NS-NS sector couples directly
to the string world-sheet: the string carries (electric) charge w.r.t. Bµν ,

S = − 1
4πα′

∫
d2ξ εαβ Bµν(X ) ∂αXµ ∂βX ν .

The Lagrangian changes by a total derivative under the gauge symmetry,

Bµν → Bµν + ∂µΛν − ∂νΛµ

In electromagnetism, the gauge invariant degrees of freedom are contained in
the field strength, F = d A. Similarly, H = d B,

Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν

However, the situation for the R-R potentials C(n) is very different, because
the vertex operators for the R-R states involve only the F (n+1).

Thus, only the field strengths, not the potentials, would couple to the string.

Thus elementary, perturbative string states cannot carry any charge with
respect to the R-R gauge fields C(n).
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RR fields couple to extended objects

We are thereby forced to search for non-perturbative degrees of freedom
which couple to these potentials.

Clearly, they must be extended objects that sweep out a p + 1-dimensional
world-volume as they propagate in time, generalizing the notion of a string,

q
∫
Wn

dnξ εa0···an−1
∂xµ1

∂ξa0
· · · ∂xµn

∂ξan−1
C(n)

µ1···µn −→ q
∫
Wn

C(n) .

in complete analogy with electromagnetic and B-field minimal couplings.

The massless states of the R-R sectors are given by the CG decompositions:

Type IIA: 16s ⊗ 16c = [0]⊕ [2]⊕ [4].

Type IIB: 16s ⊗ 16s = [1]⊕ [3]⊕ [5]+.

They corresponds to completely antisymmetric tensors of rank n, or n-forms.
The + subscript indicates a self-duality condition.
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Electric and magnetic coupling of extended objects

Consider F (p+2), a p + 2-form representing an antisymmetric tensor field with
p + 2 indices in D dimensions.

It is the field strength of a potential, F (p+2)= dC(p+1), that electrically couples
to a p + 1-dimensional object,Wp+1,

µp

∫
Wp+1

C(p+1) ,

Wp+1 being the world-volume of an extended object called p-brane.

The Hodge dual of F (p+2) is

F̃ (D−p−2) = ?F (p+2) = dC̃(D−p−3) .

Its potential couples magnetically to the extended objectWD−p−3,

µD−p−4

∫
WD−p−3

C̃(D−p−3) .
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Extended objects in type II superstring theory

In superstring theory, D = 10 thus we have two possible couplings

F (n+2) couples to

{
electric n branes ,

magnetic 6− n branes .

Recall that the F (n) forms resulted from the tensor product of two MW spinor
representations in ten dimensions,

F (n)
µ1···µn = R〈ψ(0)

+(±)|Γ[µ1···µn]|ψ
(0)
−(±)〉R .

Because of GSO projection, the states |ψ(0)
−(±)〉R have definite Γ11 eigenvalue

±1. Thus, given that

Γ11 Γ[µ1 · · · Γµn] =
(−1)[ n

2 ] n!

(10− n)!2 ε
µ1···µn

ν1···ν10−n
Γ[ν1 · · · Γν10−n] ,

there is an isomorphism (electric-magnetic duality )

F (n)
µ1···µn ∼ εµ1···µn

ν1···ν10−n
F (10−n)

ν1···ν10−n .

This identifies the representations [n]↔ [10− n]; in particular, [5] is self-dual.
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Branes in type IIA theory

Recall that, in type IIA: 16s ⊗ 16c = [0]⊕ [2]⊕ [4]. Thus, there are even
branes.

In the NS-NS sector:

H3 couples to

{
electric 1 branes ⇒ F1-string

magnetic 5 branes ⇒ NS5-brane

In the R-R sector:

F[2] couples to

{
electric 0 branes ⇒ D0-brane

magnetic 6 branes ⇒ D6-brane

F[4] couples to

{
electric 2 branes ⇒ D2-brane

magnetic 4 branes ⇒ D4-brane
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Branes in type IIB theory

In type IIB: 16s ⊗ 16s = [1]⊕ [3]⊕ [5]+. Thus, there are odd branes.

In the NS-NS sector:

H3 couples to

{
electric 1 branes ⇒ F1-string

magnetic 5 branes ⇒ NS5-brane

In the R-R sector:

F[1] couples to

{
electric −1 branes ⇒ D(-1)-brane

magnetic 7 branes ⇒ D7-brane

F[3] couples to

{
electric 1 branes ⇒ D1-brane

magnetic 5 branes ⇒ D5-brane

F[5] couples to

{
electric 3 branes ⇒ D3-brane

magnetic 3 branes ⇒ D3-brane

Since the F[5] is self-dual, full electromagnetic duality is in place.
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Electric-magnetic duality

Let us recall how the story goes in Maxwell theory. In the absence of charges
and currents,

d F = 0 and d ?F = 0 ,
where F is the 2-form field strength describing electric and magnetic fields.

The equations are symmetric under the interchange of F and ?F . Assuming
that sources can be added in a symmetric fashion,

d F = ?Jm and d ?F = ?Je ,

we face Dirac’s quantization condition: the wave function of an electrically
charged particle moving in the field of a monopole is uniquely defined if

e · g ∈ 2π Z .

We have seen that our branes, D-branes, can both couple electrically or
magnetically. Their charges are measured using Gauss’ law.

The Dirac quantization condition has a straightforward generalization,

µp · µ6−p ∈ 2π Z .
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Type II low energy effective actions

Similarly to the bosonic case, the vanishing of the Weyl anomaly demands,

βµν(g) = βµν(B) = βµν(Φ) = 0 ,

where these equations are covariant complicated expressions of the massless
fields.

In type II superstrings we have, in addition, we should include the RR-forms in
a way compatible with supersymmetry.

Thus, these equations coincide with those arising in ten dimensional theories
of supergravity.

The number of supersymmetries is 32. Whereas type IIB theory is chiral, type
IIA is not. We will present their Lagrangians next.

Higher order α′ corrections would lead to higher powers of the curvature, as in
the bosonic string.
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Type IIA effective action

The Lagrangian of type IIA supergravity in the string frame reads

SIIA =
1

2κ2

∫
e−2Φ

(
d10x

√
−g R + 4 dΦ ∧ ?dΦ− 1

2
1
3!

H[3] ∧ ?H[3]

− 1
2

[
1
2!

F[2] ∧ ?F[2] +
1
4!

F[4] ∧ ?F[4] + B[2] ∧ F[4] ∧ F[4]

])
,

where

F[2] = dC[1] F[4] = dC[3] − C[1] ∧ H[3] H[3] = dB[2]

We can go to the Einstein frame by

(gµν)string = g−1/2
s eΦ/2 (gµν)Einstein

where gs = eΦ(r→∞) is the string coupling constant. Then,√
|g|string = (g−1/2

s eΦ/2)5
√
|g|Einstein = g−5/2

s e5Φ/2
√
|g|Einstein .
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Type IIA effective action

In general, for any p–form

(F[p]∧?F[p])string = gp/2
s e−p Φ/2 (F[p]∧?F[p])Einstein .

The resulting action in the Einstein frame reads:

SE
IIA =

1
2κ2

∫ (
d10x

√
−gE RE −

1
2

dΦ ∧ ?dΦ− 1
2

1
3!

e−Φ H[3] ∧ ?H[3]

− 1
2

[
1
2!

e
3
2 Φ F[2] ∧ ?F[2] +

1
4!

e
1
2 Φ F[4] ∧ ?F[4] + B[2] ∧ F[4] ∧ F[4]

])
.

Gravity is now canonically normalized, as well as the dilaton kinetic term, but
the coupling with the R-R forms is more involved.

Notice that to compute the solution corresponding to a specific D-brane,

S =
1

2κ2

∫
d10x

√
−g
{

R − 1
2
∂µφ∂

µφ− 1
2

e an φ Fn
2
}
.
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Type IIB effective action

The Lagrangian of type IIB supergravity in the string frame reads

SIIB =
1

2κ2

∫
e−2Φ

(
d10x

√
−g R + 4 dΦ ∧ ?dΦ− 1

2 3!
H[3] ∧ ?H[3]

)

− 1
4κ2

∫ (
F[1] ∧ ?F[1] +

1
3!

F[3] ∧ ?F[3] +
1
2

1
5!

F[5] ∧ ?F[5]

−C[4] ∧ F[3] ∧ H[3]

)
where

F[1] = dC[0] F[3] = dC[2] − C[0] H[3]

H[3] = dB[2] F[5] = dC[4] −
1
2

C[2] ∧ H[3] +
1
2

B[2] ∧ F[3]

supplemented by the additional on-shell constraint F[5] = ?F[5].
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Type IIB effective action

It can also be driven to its Einstein frame form,

SE
IIB =

1
2κ2

∫ (
d10x

√
−gE RE −

1
2

dΦ ∧ ?dΦ− 1
2 3!

e−Φ H[3] ∧ ?H[3]

− 1
2

[
e2Φ F[1] ∧ ?F[1] +

1
3!

eΦ F[3] ∧ ?F[3] +
1
2

1
5!

F[5] ∧ ?F[5]

]

−C[4] ∧ F[3] ∧ H[3]

)
.

Again, to compute the solution corresponding to a specific D-brane,

S =
1

2κ2

∫
d10x

√
−g
{

R − 1
2
∂µφ∂

µφ− 1
2

e an φ Fn
2
}
.

We have a3 = −1 for the NS-NS 3-form, H[3], and an = 5−n
2 for any RR n-form,

F[n]. Notice that for n = 5, i.e., the self-dual D3-brane, the dilaton decouples.

Even the remaining string theories fit into this quite simple action.
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D-branes as classical solutions

The equations of motion are:

Rµν −
1
2

gµνR =
1
2

(
∂µφ∂νφ−

1
2

gµν∂λφ∂λφ
)

+
1

2(n − 1)!
ean φ τµν ,

1√
−g

∂µ
(√
−g gµν ∂νφ

)
− 1

2
an

n!
ean φ F 2

n = 0 ,

1
(n − 1)!

1√
−g

∂µ
(√
−g ean φ Fµν2...νn

)
= 0 ,

where the electromagnetic stress-energy tensor reads

τµν = Fµλ2...λnI
Fνλ2...λnI − 1

2n
gµν F 2

n .

The most general metric that incorporates all the symmetries is:

ds2 = −B2dt2 + C2δij dy idy j + F 2 dr2 + G2 r2 dΩ2
d−1 .

with all the functions depending only on r .
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D-branes as classical solutions

There is an extremal solution

ds2 = H−
2(7−p)

∆

(
−dt2 + δij dy idy j)+ H

2(p+1)
∆

(
dr2 + r2 dΩ2

d−1
)
.

with ∆ = (p + 1)(7− p) + 4 a2
n and

H = 1 +

√
∆

4(7− p)

Q
r7−p .

Now, electric solutions are those with p = n − 2 whereas magnetic solutions
have p = 8− n. The dilaton reads

e φ = H
8 ap+2

∆ or e φ = H−
8 a8−p

∆ ,

whereas the R-R form

Fty1···ypr =
d
dr

H−1 or Fθ1···θ8−p = Q ω8−p ,

the latter being proportional to the volume element of S8−p.
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The D3-brane

The solutions look simpler in the string frame,

ds2 = H−
1
2
(
−dt2 + δij dy idy j)+ H

1
2
(
dr2 + r2 dΩ2

5
)
.

for any p. The mass of these solutions can be computed

M = |q| q =
Lp Ω8−p

2κ2 Q ;

they all saturate the BPS bound.

As mentioned earlier, the case n = 5 (that is, p = 3) is special. If we plug it
into previous expressions, a5 = 0, ∆ = 16, and

ds2 =

(
1 +

1
4

Q
r4

)− 1
2 (
−dt2 + δij dy idy j)+

(
1 +

1
4

Q
r4

) 1
2 (

dr2 + r2 dΩ2
5
)
.

If we focus in the region close to the throat, r → 0, the metric behaves as

ds2 ∼ r2 (−dt2 + δij dy idy j)+ r−2 (dr2 + r2 dΩ2
5
)
.

This is AdS5 × S5 with equal radii of curvature.
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D-branes and boundary contributions

Let us come back to the gauge symmetry of (we set 2πα′ = 1)

S = −1
2

∫
d2ξ εαβ Bµν(X ) ∂αXµ ∂βX ν .

If we perform the gauge symmetry transformation,

δBµν = ∂µΛν − ∂νΛµ

then the action transforms as

δS = −
∫

d2ξ εαβ ∂µΛν ∂αXµ ∂βX ν = −
∫

d2ξ εαβ ∂αΛν ∂βX ν .

= −
∫

dτ dσ (∂τΛν ∂σX ν − ∂σΛν ∂τX ν)

= −
∫

dτ dσ (∂τ [Λν ∂σX ν ]− ∂σ [Λν ∂τX ν ])

the total derivative ∂τ gives no boundary contribution but ∂σ does!
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D-branes and boundary contributions

From the point of view of the open strings, the D-branes are hypersurfaces
where their end-points can lie,

δS =

∫
dτ dσ (∂σ [Λν ∂τX ν ]) =

∫
dτ [Λν ∂τX ν ]

∣∣∣∣σ=π

σ=0

Now, we have to distinguish between Xµ = (X m,X a), where m = 0, 1, . . . , p,

δS =

∫
dτ [Λm ∂τX m + Λa ∂τX a]

∣∣∣∣σ=π

σ=0
=

∫
dτ [Λm ∂τX m]

∣∣∣∣σ=π

σ=0

since ∂τX a = 0 at both end-points.

Gauge invariance fails at the end-points of the string! To restore it, we must
add a couple of terms that give electric charge to the string end-points,

S = −1
2

∫
d2ξ εαβ Bµν(X ) ∂αXµ ∂βX ν +

∫
dτ Am(X )

dX m

dτ

∣∣∣∣σ=π

σ=0
.

The string end-points are oppositely charged and Fmn → Fmn = Fmn + Bmn.
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