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The prompt production of the charmonium χc1 and χc2 mesons has been studied in proton–proton
collisions at the Large Hadron Collider at a centre-of-mass energy of

√
s = 7 TeV. The χc mesons are

identified through their decays χc → J/ψγ with J/ψ → μ+μ− using 36 pb−1 of data collected by
the LHCb detector in 2010. The ratio of the prompt production cross-sections for the two χc spin states,
σ(χc2)/σ (χc1), has been determined as a function of the J/ψ transverse momentum, p J/ψ

T , in the range
from 2 to 15 GeV/c. The results are in agreement with the next-to-leading order non-relativistic QCD
model at high p J/ψ

T and lie consistently above the pure leading-order colour-singlet prediction.
© 2012 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

Explaining heavy quarkonium production remains a challeng-
ing problem for Quantum Chromodynamics (QCD). At the energies
of the proton–proton (pp) collisions at the Large Hadron Collider,
cc pairs are expected to be produced predominantly via Lead-
ing Order (LO) gluon–gluon interactions, followed by the forma-
tion of the bound charmonium states. While the former can be
calculated using perturbative QCD, the latter is described by non-
perturbative models. Other, more recent, approaches make use of
non-relativistic QCD factorisation (NRQCD) which assumes a com-
bination of the colour-singlet (CS) and colour-octet (CO) cc and soft
gluon exchange for the production of the final bound state [1]. To
describe previous experimental data, it was found to be necessary
to include Next-to-Leading Order (NLO) QCD corrections for the
description of charmonium production [2,3].

The study of the production of P -wave charmonia χc J (1P ),
with J = 0,1,2, is important, since these resonances give sub-
stantial feed-down contributions to the prompt J/ψ production
through their radiative decays χc → J/ψγ and can have signif-
icant impact on the measurement of the J/ψ polarisation. Fur-
thermore, the ratio of the production rate of χc2 to that of χc1
is interesting because it is sensitive to the CS and CO production
mechanisms.

Measurements of χc production and the relative amounts of
the χc1 and χc2 spin states, have previously been made using
different particle beams and energies [4–6]. In this Letter, we re-
port a measurement from the LHCb experiment of the ratio of the
prompt cross-sections for the two χc spin states, σ(χc2)/σ (χc1),
as a function of the J/ψ transverse momentum in the range

✩ © CERN for the benefit of the LHCb Collaboration.

2 < p J/ψ
T < 15 GeV/c and in the rapidity range 2.0 < y J/ψ < 4.5.

The χc candidates are reconstructed through their radiative de-
cay χc → J/ψγ , with J/ψ → μ+μ− , using a data sample with
an integrated luminosity of 36 pb−1 collected during 2010. In this
Letter, prompt production of χc refers to χc mesons that are pro-
duced at the interaction point and do not arise from the decay
of a b-hadron. The sample therefore includes χc from the decay
of short-lived resonances, such as ψ(2S), which are also produced
at the interaction point. All three χc J states are considered in the
analysis. Since the χc0 → J/ψγ branching fraction is ∼ 30 (17)
times smaller than that of the χc1 (χc2), the yield of χc0 is not
significant. The measurements extend the p J/ψ

T coverage with re-
spect to previous experiments.

2. LHCb detector and selection requirements

The LHCb detector [7] is a single-arm forward spectrome-
ter with an angular coverage from approximately 10 mrad to
300 mrad (250 mrad) in the bending (non-bending) plane. The
detector consists of a vertex detector (VELO), a dipole magnet,
a tracking system, two ring-imaging Cherenkov (RICH) detectors,
a calorimeter system and a muon system.

Of particular importance in this measurement are the calorime-
ter and muon systems. The calorimeter consists of a scintillating
pad detector (SPD) and a pre-shower, followed by electromagnetic
(ECAL) and hadronic calorimeters. The SPD and pre-shower are de-
signed to distinguish between signals from photons and electrons.
The ECAL is constructed from scintillating tiles interleaved with
lead tiles. Muons are identified using hits in detectors interleaved
with iron filters.

The signal simulation sample used for this analysis was gen-
erated using the Pythia 6.4 generator [8] configured with the
parameters detailed in Ref. [9]. The EvtGen [10], Photos [11]
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Fig. 1. Distribution of �M = M(μ+μ−γ ) − M(μ+μ−) for selected candidates with 3 < p J/ψ
T < 15 GeV/c for (a) converted and (b) non-converted photons. The lower solid

curves correspond to the χc0, χc1 and χc2 peaks from left to right, respectively (the χc0 peak is barely visible). The background distribution is shown as a dashed curve. The
upper solid curve corresponds to the overall fit function.
and Geant4 [12] packages were used to decay unstable particles,
generate QED radiative corrections and simulate interactions in the
detector, respectively. The sample consists of events in which at
least one J/ψ → μ+μ− decay takes place with no constraint on
the production mechanism.

The trigger consists of a hardware stage followed by a software
stage which applies a full event reconstruction. For this analy-
sis the trigger selects a pair of oppositely charged muon candi-
dates, where either one of the muons has a transverse momentum
pT > 1.8 GeV/c or one of the pair has pT > 0.56 GeV/c and the
other has pT > 0.48 GeV/c. The invariant mass of the candidates
is required to be greater than 2.9 GeV/c2. The photons are not in-
volved in the trigger decision for this analysis.

Photons are identified and reconstructed using the calorime-
ter and tracking systems. The identification algorithm provides an
estimator for the hypothesis that a calorimeter cluster originates
from a photon. This is a likelihood-based estimator constructed
from variables that rely on calorimeter and tracking information.
For example, in order to reduce the electron background, candi-
date photon clusters are required not to be matched to a track
extrapolated into the calorimeter. For each photon candidate a
likelihood (CLγ ) is calculated based on simulated signal and back-
ground samples. The photons identified by the calorimeter and
used in this analysis can be classified as two types: those that have
converted in the material after the dipole magnet and those that
have not. Converted photons are identified as clusters in the ECAL
with correlated activity in the SPD. In order to account for the
different energy resolutions of the two types of photons, the anal-
ysis is performed separately for converted and non-converted pho-
tons and the results combined as described in Section 3. Photons
that convert before the magnet require a different analysis strat-
egy and are not considered here. The photons used to reconstruct
the χc candidates are required to have a transverse momentum
pγ

T > 650 MeV/c, a momentum pγ > 5 GeV/c and a likelihood
CLγ > 0.5.

The muon and J/ψ identification criteria are identical to those
used in Ref. [13]: each track must be identified as a muon with
pT > 700 MeV/c and a quality of the track fit χ2/ndf < 4, where
ndf is the number of degrees of freedom. The two muons must
originate from a common vertex with a probability of the vertex
fit > 0.5%. In addition, in this analysis the μ+μ− invariant mass is
required to be in the range 3062–3120 MeV/c2. The J/ψ pseudo-
decay time, tz , is used to reduce the contribution from non-prompt
decays, by requiring tz = (z J/ψ − zPV)M J/ψ/pz < 0.1 ps, where

M J/ψ is the reconstructed dimuon invariant mass, z J/ψ − zPV is the
z separation of the reconstructed production (primary) and decay
vertices of the dimuon, and pz is the z-component of the dimuon
momentum with the z-axis parallel to the beam line. Simulation
studies show that, with this requirement applied, the remaining
fraction of χc from b-hadron decays is about 0.1%. This introduces
an uncertainty much smaller than any of the other systematic or
statistical uncertainties evaluated in this analysis and is not con-
sidered further.

In the data, the average χc candidate multiplicity per selected
event is 1.3 and the percentage of events with more than one
genuine χc candidate (composed of a unique J/ψ and photon)
is estimated to be 0.23% from the simulation. All χc candidates
are considered for further analysis. The mass difference, �M =
M(μ+μ−γ ) − M(μ+μ−), of the selected candidates is shown in
Fig. 1 for the converted and non-converted samples; the overlaid
fits are described in Section 3.

3. Experimental method

The production cross-section ratio of the χc2 and χc1 states is
measured as

σ(χc2)

σ (χc1)
= Nχc2

Nχc1

· εχc1

εχc2
· B(χc1 → J/ψγ )

B(χc2 → J/ψγ )
, (1)

where B(χc1 → J/ψγ ) and B(χc2 → J/ψγ ) are the χc1 and χc2
branching fractions to the final state J/ψγ , and

εχc1

εχc2
= ε

χc1
J/ψε

χc1
γ ε

χc1
sel

ε
χc2
J/ψε

χc2
γ ε

χc2
sel

, (2)

where ε
χc J
J/ψ is the efficiency to trigger, reconstruct and select a

J/ψ from a χc J decay, ε
χc J
γ is the efficiency to reconstruct and

select a photon from a χc J decay and ε
χc J

sel is the efficiency to sub-
sequently select the χc J candidate.

Since the mass difference between the χc1 and χc2 states is
45.54 ± 0.11 MeV/c2, the signal peaks cannot be separately iso-
lated using the calorimeter information. An unbinned maximum
likelihood fit to the �M mass difference distribution is performed
to obtain the three Nχc J yields simultaneously. The determination
of the efficiency terms in Eq. (2) is described in Section 3.1.

The signal mass distribution is parametrised using three Gaus-
sian functions (F J

sig for J = 0,1,2). The combinatorial background
is described by
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Table 1
Signal χc yields and fit quality from the fit to the converted and non-converted candidates in each p J/ψ

T bin.

p J/ψ
T (GeV/c) Converted photons Non-converted photons

χc1 yield χc2 yield χ2/ndf χc1 yield χc2 yield χ2/ndf

2–3 3120 ±248 2482 ±301 0.91 4080 ±246 3927 ±280 1.02

3–4 3462 ±224 3082±249 0.81 4919 ±183 3443 ±207 1.02

4–5 3235 ±146 1769 ±174 1.03 4497 ±134 2718 ±143 1.08

5–6 2476 ±110 1443 ±121 0.84 3203 ±105 1999 ±107 1.45

6–7 1497 ±80 736 ±89 1.05 1946 ±78 1338 ±83 0.78

7–8 933 ±77 658 ±86 0.77 1342 ±59 747 ±60 1.15

8–9 660 ±47 302 ±51 0.90 817 ±43 395 ±42 0.78

9–10 451 ±34 142 ±35 0.82 501 ±32 256 ±31 1.09

10–11 255 ±25 86 ±26 1.13 317 ±26 188 ±25 0.85

11–12 129 ±28 99 ±30 0.87 222 ±19 103 ±18 0.93

12–13 129 ±16 46 ±15 1.09 154 ±15 50 ±13 0.98

13–15 127 ±18 42 ±20 0.91 158 ±18 63 ±17 1.05
Fbgd = xa(1 − e
m0

c (1−x)) + b(x − 1), (3)

where x = �M/m0 and m0, a, b and c are free parameters.
A possible source of background from partially reconstructed

decays is due to ψ(2S)→ J/ψπ0π0 decays where the J/ψ and
a photon from one of the neutral pions are reconstructed and
selected as a χc candidate. Simulation studies show that the ex-
pected yield is ∼ 0.1% of the signal yield and this background is
therefore neglected for this analysis.

The overall fit function is

F =
2∑

J=0

fχc J F
J

sig+
[

1 −
2∑

J=0

fχc J

]
Fbgd, (4)

where fχc J are the signal fractions. The mass differences between
the χc1 and χc2 states and the χc1 and χc0 states are fixed to the
values from Ref. [14]. The mass resolutions for the χc states, σ

χc J
res ,

are given by the widths of the Gaussian functions for each state.
The ratios of the mass resolutions, σ

χc2
res /σ

χc1
res and σ

χc0
res /σ

χc1
res , are

taken from simulation. The value of σ
χc2
res /σ

χc1
res is consistent with

the value measured from data, fitting in a reduced �M range and
with a simplified background parametrisation.

With the mass differences and the ratio of the mass reso-
lutions fixed, a fit is performed to the data in the range 3 <

p J/ψ
T < 15 GeV/c, in order to determine the χc1 mass resolu-

tion σ
χc1
res . This range is chosen because the background has a dif-

ferent shape in the p J/ψ
T bin 2–3 GeV/c and is not well described

by Fbgd when combined with the rest of the sample. Simula-
tion studies show that the signal parameters for the χc J states

in the p J/ψ
T bin 2–3 GeV/c are consistent with the parameters in

the rest of the sample. The distributions of �M for the fits to
the converted and non-converted candidates are shown in Fig. 1.
The mass resolution, σ

χc1
res , is measured to be 21.8 ± 0.8 MeV/c2

and 18.3 ± 0.4 MeV/c2 for converted and non-converted candi-
dates respectively. The corresponding values in the simulation are
19.0 ± 0.2 MeV/c2 and 17.5 ± 0.1 MeV/c2 and show a weak de-
pendence of σ

χc1
res on p J/ψ

T which is accounted for in the systematic
uncertainties.

In order to measure the χc yields, the fit is then performed in
bins of p J/ψ

T in the range 2 < p J/ψ
T < 15 GeV/c. For each p J/ψ

T bin,
the mass differences, the ratio of the mass resolutions and σ

χc1
res are

fixed as described above. In total, there are eight free parameters
for each fit in each bin in p J/ψ

T and the results are summarised
in Table 1; the fit χ2/ndf for the converted and non-converted
samples is good in all bins. The total observed yields of χc0, χc1
and χc2 are 820 ± 650, 38 630 ± 550 and 26 110 ± 620, respec-

Fig. 2. Reconstruction and selection efficiency ratios in bins of p J/ψ
T . The ratio

of the J/ψ efficiency (εχc2
J/ψ /ε

χc1
J/ψ ) is shown with red circles. The ratio of the

photon reconstruction and selection efficiency times the χc selection efficiency
(εχc2

γ ε
χc2
sel /ε

χc1
γ ε

χc1
sel ) is shown with blue triangles.

tively, calculated from the signal fractions fχc J and the number
of candidates in the sample. The raw χc yields for converted and
non-converted candidates are combined, corrected for efficiency
(as described in Section 3.1) and the cross-section ratio is deter-
mined using Eq. (1).

3.1. Efficiencies

The efficiency ratios to reconstruct and select χc candidates
are obtained from simulation. Since the photon interaction with
material is not part of the event generation procedure, the in-
dividual efficiencies for converted and non-converted candidates
are not separated. Therefore, the combined efficiencies are cal-
culated. The ratios of the overall efficiency for the detection of
J/ψ mesons originating from the decay of a χc1 compared to
a χc2, ε

χc2
J/ψ/ε

χc1
J/ψ , are consistent with unity for all p J/ψ

T bins, as
shown in Fig. 2. The ratios of the efficiencies for reconstructing
and selecting photons from χc decays and then selecting the χc ,
ε
χc2
γ ε

χc2
sel /ε

χc1
γ ε

χc1
sel , are also shown in Fig. 2. In general these ef-

ficiency ratios are consistent with unity, except in the p J/ψ
T bins

2–3 GeV/c and 3–4 GeV/c where the reconstruction and detection
efficiencies for χc1 are smaller than for χc2. The increase in the
efficiency ratio in these bins arises because the photon pT spectra
are different for χc1 and χc2. The photon pγ

T > 650 MeV/c require-
ment cuts harder in the case of the χc1 and therefore lowers this
efficiency. The increase in the efficiency ratio is a kinematic effect,
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Table 2
Polarisation weights in p J/ψ

T bins for different combinations of χc1 and χc2 polarisation states | J ,mχc J 〉 with |mχc J | = 0, . . . , J . The polarisation axis is defined as the
direction of the χc in the laboratory frame. Unpol. means the χc is unpolarised.

(|mχc1 |, |mχc2 |) p J/ψ
T (GeV/c)

2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12 12–13 13–15

(Unpol, 0) 0.99 0.97 0.94 0.91 0.88 0.87 0.86 0.86 0.86 0.85 0.85 0.88
(Unpol, 1) 0.97 0.98 0.97 0.95 0.94 0.94 0.93 0.93 0.93 0.93 0.93 0.93
(Unpol, 2) 1.03 1.04 1.07 1.11 1.14 1.17 1.18 1.18 1.19 1.18 1.19 1.16
(0, Unpol) 1.01 0.99 0.97 0.93 0.90 0.89 0.87 0.86 0.85 0.87 0.86 0.84
(1, Unpol) 0.99 1.00 1.02 1.04 1.05 1.06 1.06 1.07 1.08 1.07 1.07 1.08
(0,0) 1.00 0.97 0.91 0.84 0.80 0.77 0.75 0.74 0.72 0.74 0.74 0.74
(0,1) 0.98 0.97 0.93 0.88 0.85 0.83 0.81 0.81 0.79 0.81 0.81 0.78
(0,2) 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.00 1.03 1.03 0.98
(1,0) 0.99 0.97 0.96 0.94 0.93 0.92 0.92 0.92 0.92 0.91 0.91 0.95
(1,1) 0.97 0.98 0.98 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.01
(1,2) 1.03 1.04 1.09 1.15 1.20 1.23 1.26 1.26 1.28 1.26 1.27 1.25
rather than a reconstruction effect, and is well modelled by the
simulation.

3.2. Polarisation

The production of polarised χc states would modify the ef-
ficiencies calculated from the simulation, which assumes unpo-
larised χc . A measurement of the χc polarisation would require
an angular analysis, which is not feasible with the present amount
of data. Various polarisation scenarios are considered in Table 2.
Assuming no azimuthal dependence in the production process, the
χc → J/ψγ system is described by three angles: θ J/ψ , θχc and φ,
where θ J/ψ is the angle between the directions of the positive
muon in the J/ψ rest frame and the J/ψ in the χc rest frame,
θχc is the angle between the directions of the J/ψ in the χc rest
frame and the χc in the laboratory frame, and φ is the angle be-
tween the plane formed from the χc and J/ψ momentum vectors
in the laboratory frame and the J/ψ decay plane in the J/ψ rest
frame. The angular distributions are independent of the choice of
polarisation axis (the direction of the χc in the laboratory frame)
and are detailed in Ref. [5]. For each simulated event in the un-
polarised sample, a weight is calculated from the distribution of
these angles in the various polarisation hypotheses compared to
the unpolarised distribution. The weights in Table 2 are then the
average of these per-event weights in the simulated sample. For
a given (|mχc1 |, |mχc2 |) polarisation combination, the central value

of the determined cross-section ratio in each p J/ψ
T bin should be

multiplied by the number in the table. The maximum effect from
the possible polarisation of the χc1 and χc2 mesons is given sepa-
rately from the systematic uncertainties in Table 4 and Fig. 3.

4. Systematic uncertainties

The branching fractions used in the analysis are B(χc1 →
J/ψγ ) = 0.344 ± 0.015 and B(χc2 → J/ψγ ) = 0.195 ± 0.008,
taken from Ref. [14]. The relative systematic uncertainty on the
cross-section ratio resulting from the χc → J/ψγ branching frac-
tions is 6%; the absolute uncertainty is given for each bin of p J/ψ

T
in Table 3.

The simulation sample used to calculate the efficiencies has ap-
proximately the same number of χc candidates as are observed in
the data. The statistical errors from the finite number of simulated
events are included as a systematic uncertainty in the final results.
The uncertainty associated to this is determined by sampling the
efficiencies used in Eq. (1) according to their errors. The relative
systematic uncertainty due to the limited size of the simulation
Fig. 3. Ratio σ(χc2)/σ (χc1) in bins of 2 < p J/ψ
T < 15 GeV/c. The LHCb results, in

the rapidity range 2.0 < y J/ψ < 4.5 and assuming the production of unpolarised χc

mesons, are shown with solid black circles and the internal error bars correspond to
the statistical error; the external error bars include the contribution from the sys-
tematic uncertainties (apart from the polarisation). The lines surrounding the data
points show the maximum effect of the unknown χc polarisations on the result.
The upper and lower limits correspond to the spin states as described in the text.
The CDF data points, at

√
s = 1.96 TeV in pp̄ collisions and in the J/ψ pseudo-

rapidity range |η J/ψ | < 1.0, are shown in (a) with open blue circles [6]. The two
hatched bands in (b) correspond to the ChiGen Monte Carlo generator [15] and
NLO NRQCD [3] predictions.
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Table 3
Summary of the systematic uncertainties (absolute values) on σ(χc2)/σ (χc1) in each p J/ψ

T bin.

p J/ψ
T (GeV/c) 2–3 3–4 4–5 5–6 6–7 7–8

Branching fractions +0.08
−0.08

+0.08
−0.08

+0.06
−0.06

+0.07
−0.07

+0.07
−0.07

+0.06
−0.06

Size of simulation sample +0.01
−0.01

+0.01
−0.01

+0.01
−0.01

+0.01
−0.01

+0.02
−0.01

+0.02
−0.02

Fit model +0.04
−0.05

+0.05
−0.04

+0.03
−0.03

+0.03
−0.03

+0.03
−0.04

+0.05
−0.04

Simulation calibration +0.00
−0.08

+0.00
−0.07

+0.00
−0.05

+0.00
−0.05

+0.00
−0.06

+0.00
−0.06

p J/ψ
T (GeV/c) 8–9 9–10 10–11 11–12 12–13 13–15

Branching fractions +0.05
−0.05

+0.05
−0.05

+0.05
−0.05

+0.06
−0.06

+0.04
−0.04

+0.04
−0.04

Size of simulation sample +0.02
−0.02

+0.02
−0.02

+0.04
−0.04

+0.06
−0.06

+0.05
−0.05

+0.05
−0.05

Fit model +0.03
−0.04

+0.03
−0.03

+0.03
−0.03

+0.02
−0.13

+0.02
−0.02

+0.08
−0.03

Simulation calibration +0.00
−0.04

+0.00
−0.04

+0.00
−0.05

+0.00
−0.06

+0.00
−0.04

+0.00
−0.03
Table 4
Ratio σ(χc2)/σ (χc1) in bins of p J/ψ

T in the range 2 < p J/ψ
T < 15 GeV/c

and in the rapidity range 2.0 < y J/ψ < 4.5. The first error is the statistical
error, the second is the systematic uncertainty (apart from the branch-
ing fraction and polarisation) and the third is due to the χc → J/ψγ
branching fractions. Also given is the maximum effect of the unknown
χc polarisations on the result as described in Section 3.2.

p J/ψ
T (GeV/c) σ (χc2)/σ (χc1) Polarisation effects

2–3 1.39+0.12+0.06+0.08
−0.13−0.09−0.08

+0.06
−0.05

3–4 1.32+0.10+0.03+0.08
−0.09−0.09−0.08

+0.06
−0.05

4–5 1.02+0.07+0.04+0.06
−0.06−0.06−0.06

+0.09
−0.09

5–6 1.08+0.07+0.04+0.07
−0.06−0.06−0.07

+0.16
−0.17

6–7 1.09+0.08+0.03+0.07
−0.09−0.07−0.07

+0.22
−0.22

7–8 1.08+0.13+0.05+0.06
−0.10−0.07−0.06

+0.25
−0.25

8–9 0.86+0.10+0.04+0.05
−0.10−0.06−0.05

+0.22
−0.21

9–10 0.75+0.11+0.04+0.05
−0.11−0.06−0.05

+0.20
−0.19

10–11 0.91+0.16+0.05+0.05
−0.15−0.07−0.05

+0.25
−0.25

11–12 0.91+0.19+0.09+0.06
−0.17−0.10−0.06

+0.24
−0.24

12–13 0.68+0.18+0.05+0.04
−0.16−0.07−0.04

+0.19
−0.18

13–15 0.69+0.20+0.07+0.04
−0.18−0.07−0.04

+0.18
−0.18

sample is found to be in the range (0.6–7.2)% and is given for
each p J/ψ

T bin in Table 3.
The measured χc yields depend on the values of the fixed

parameters and the fit range used. The associated systematic un-
certainty has been evaluated by repeating the fit many times,
changing the values of the fixed parameters and the fit range.
Since the uncertainties arising from the fixed parameters are ex-
pected to be correlated, a single procedure is used simultaneously
varying all these parameters. The χc mass difference parameters
are sampled from two Gaussian distributions with widths taken
from the errors on the masses given in Ref. [14]. The mass res-
olution ratios, σ

χc2
res /σ

χc1
res and σ

χc0
res /σ

χc1
res , are varied according to

the error matrix of the fit to the simulated sample in the range
3 < p J/ψ

T < 15 GeV/c.
The mass resolution σ

χc1
res is also determined using a simpli-

fied background model and fitting in a reduced range. Simulation
studies show that the value of σ

χc1
res also has a weak dependence

on p J/ψ
T . The mass resolution σ

χc1
res is randomly sampled from the

values obtained from the default fit (described in Section 3) ac-
cording to its error, the simplified fit, again according to its error,
and by modifying it in each p J/ψ

T bin according to the variation
observed in the simulation.

The systematic uncertainty associated with the shape of the fit-
ted background function is incorporated by including or excluding
the χc0 signal shape, which peaks in the region where the back-
ground shape is most sensitive.

The background shape is also sensitive to the rise in the �M
distribution. The systematic uncertainty from this is included by
varying the lower edge of the fit range in the interval ±10 MeV/c2

around its nominal value for each bin in p J/ψ
T .

The overall systematic uncertainty from the fit is then deter-
mined from the distribution of the χc2/χc1 cross-section ratios
by repeating the sampling procedure described above many times.
The relative uncertainty is found to be in the range (2.2–14.6)%
and is given for each bin of p J/ψ

T in Table 3.
A systematic uncertainty related to the calibration of the sim-

ulation is evaluated by performing the analysis on simulated
events and comparing the efficiency-corrected ratio of yields,
(Nχc2/Nχc1) · (εχc1/εχc2), to the true ratio generated in the sam-
ple. A deviation of −9.6% is observed, caused by non-Gaussian
signal shapes in the simulation from the calorimeter calibration.
These are not seen in the data, which is well described by Gaus-
sian signal shapes. The deviation is included as a systematic error,
by sampling from the negative half of a Gaussian with zero mean
and a width of 9.6%. The relative uncertainty on the cross-section
ratio is found to be less than 6.0% and is given for each bin of
p J/ψ

T in Table 3. A second check of the procedure was performed
using simulated events generated according to the distributions
observed in the data, i.e. three overlapping Gaussians and a back-
ground shape similar to that in Fig. 1. In this case no evidence
for a deviation was observed. Other systematic uncertainties due
to the modelling of the detector in the simulation are negligi-
ble.

In summary, the overall systematic uncertainty, excluding that
due to the branching fractions, is evaluated by simultaneously
sampling the deviation of the cross-section ratio from the central
value, using the distributions of the cross-section ratios described
above. The separate systematic uncertainties are shown in bins of
p J/ψ

T in Table 3 and the combined uncertainties are shown in Ta-
ble 4.

5. Results and conclusions

The cross-section ratio, σ(χc2)/σ (χc1), measured in bins of
p J/ψ

T is given in Table 4 and shown in Fig. 3. Previous mea-
surements from WA11 in π−Be collisions at 185 GeV/c gave
σ(χc2)/σ (χc1) = 1.4 ± 0.6 [4], and from HERA-B in pA colli-
sions at

√
s = 41.6 GeV with p J/ψ

T below roughly 5 GeV/c gave
σ(χc2)/σ (χc1) = 1.75 ± 0.7 [5]. The data points from CDF [6] at√

s = 1.96 TeV in pp̄ collisions are also shown in Fig. 3(a).
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Theoretical predictions, calculated in the LHCb rapidity range
2.0 < y J/ψ < 4.5, from the ChiGen Monte Carlo generator [15],
which is an implementation of the leading-order colour-singlet
model described in Ref. [16], and from the NLO NRQCD calcula-
tions [3] are shown in Fig. 3(b). The hatched bands represent the
uncertainties in the theoretical predictions.

Fig. 3 also shows the maximum effect of the unknown χc po-
larisations on the result, shown as the lines surrounding the data
points. In the first p J/ψ

T bin, the upper limit corresponds to the
spin state combination (|mχc1 |, |mχc2 |) = (0,2) and the lower limit
corresponds to the spin state combination (1,1). In all subsequent
p J/ψ

T bins, the upper limit corresponds to spin state combination
(1,2) and the lower limit corresponds to (0,0).

In summary, the ratio of the σ(χc2)/σ (χc1) prompt produc-
tion cross-sections has been measured as a function of p J/ψ

T using
36 pb−1 of data collected by LHCb during 2010 at a centre-of-mass
energy

√
s = 7 TeV. The ChiGen generator describes the shape of

the distribution reasonably well, although the data lie consistently
above the model prediction. This could be explained by important
higher order perturbative corrections and/or sizeable colour-octet
terms not included in the calculation. The results are in agreement
with the NLO NRQCD model for p J/ψ

T > 8 GeV/c.
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